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Currently, 40% of food produced in the U.S. is never eaten,

leading to lost resources, economic costs, decreased food

security, and the wasted food itself, which has immense

climate and ecological impacts. However, unwanted food can

be leveraged towards sustainability aims by, for example,

diverting high-quality surplus to food-insecure communities,

recycling carbon and nutrients into agricultural production, and

converting food wastes into bioenergy. This transformation will

require co-evolution of both physical infrastructure systems

that produce, deliver, and manage food and waste and human

infrastructure, from front-line workers to governance and

institutions. This contribution will synthesize current knowledge

and research in support of this transition, drawing from recent

literature and two NSF-funded workshops on wasted food

management in sustainable urban systems.
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Introduction
A safe, sustainable, and nutritious food supply is essential

to population health and well-being. But modern food

systems and their physical, human, and information infra-

structures often fall short: they are expensive, resource-
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intense [1,2], and create ecological damages [3–5] and

climate change impacts [6]. One in 10 Americans (and one

in four globally) reported food insecurity [7], even before

COVID-19, which caused unprecedented disruptions

leading to food shortages, insecurity [8], and waste

[9,10�]. Food system infrastructures are also vulnerable

to climate change [11], natural disasters, geopolitical

instability, cyberthreats, contamination [12], and global

health crises, underscoring the need to enhance food

system resilience [13�,14–16].

Food systems are also wasteful, with 30–50% of food

produced never being consumed [17]. Food is lost and

wasted across the supply chain (Figure 1), from farms,

processors, restaurants, groceries, and households [18,19].

The wasted food itself is a complex organic waste stream

whose management can strain often aging and overloaded

waste, wastewater, transport, and energy infrastructures.

In the U.S., wasted food is typically landfilled, leading to

methane emissions and climate impacts [20,21]. Globally,

wasted food accounts for 8% of all greenhouse gas emis-

sions — more than the entire airline industry [22�].

While wasted food reflects inefficient food production

and consumption practices, it also represents an opportu-

nity for environmental, economic, and social gains. It can

be re-envisioned as a resource by recovering carbon and

nutrients from crop loss back into agricultural production;

consuming more of what is purchased; diverting high-

quality surplus to food-insecure communities; and con-

verting wastes into bio-products and energy. Realizing

this transformation is challenging, due to the food sys-

tem’s complex web of activities and actors that interact to

produce, process, transport, consume, and waste nutri-

tious substances [24]. Past efforts to minimize or manage

waste have often met limited success because they fail to

consider economic, social, policy, technology, and envi-

ronmental interconnections inherent to this system [25��].

We argue that without enhancing the infrastructure sys-

tems comprising food supply chains, efforts to address

wasted food will not achieve intended sustainability and

resilience co-benefits. New research and solutions are

needed to address the physical infrastructure systems

that produce, deliver, and manage food and waste; the

human infrastructure, from front-line workers to gover-

nance and institutions; and the information infrastructure

that enhances coordination and management [26]. As a
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2 The role of infrastructure in societal transformations

Figure 1
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Food lost and wasted along the food supply chain, from ‘farm-to-fork’. Arrow size corresponds to estimated flows of food consumed, lost, or

wasted [23]. Graphic by Liz Sisk.
step towards such a research agenda, two workshops

funded by the U.S. National Science Foundation were

held on the topic of wasted food solutions [27,28]. This

article synthesizes the workshop findings with nascent

literature, to present knowledge and practice gaps we

must address to realize resilient and sustainable food

systems.

A framework for food system transformations
A circular framework for food production and wasted food

management (Figure 2) offers a compelling alternative to

inefficient and vulnerable linear food systems. Circular

economy decouples economic growth from resource

extraction and waste generation, and involves the inter-

connected strategies of narrowing, slowing, and closing

resource loops [29�,30,31]:

� Narrowing resource loops refers to using resource-effi-

cient processes that fulfill societal needs but demand

less net resource input per unit of economic output

[32]. In food systems, these strategies reduce overpro-

duction and ensure food reaches a consumer, thus

preventing wasted food.

� Slowing resource loops refers to retaining the use and

value of materials for as long as possible [33]. In food

systems, this approach can enhance resilience and

retain nutritional value by rescuing surplus food before

it becomes waste. Ideally, this surplus would feed

people, but where food deviates from nutritional, cul-

tural, or practical needs of consumers, it can be down-

cycled for animal feed.

� Closing resource loops involves recovering an end-of-

life resource and returning it to productive use [34].

Closed-loop material flows take inspiration from

cycling of nutrients and energy in nature, where waste

from one organism becomes ‘food’ for another [35,36].

These processes are often termed ‘valorization’

because they convert waste into higher-value resources
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by recovering energy, carbon, nitrogen, phosphorus,

and water.

Collectively, circular strategies can provide sustainability

benefits spanning the food system, including improved

diets [37], particularly among the food insecure [38];

reduced food system resources and costs [39�]; reduced

stress on waste treatment systems [40]; enhanced urban

agriculture practices [41]; increased generation of renew-

able energy [42]; improved health for workers and com-

munities near waste management sites [43,44]; and

enhanced food system resilience to shocks [13�]. Circular

economy also offers a more holistic perspective than

conventional waste management frameworks, which is

particularly important due to the resource-intense nature

of food systems and the potential for significant sustain-

ability benefits from upstream interventions that prevent

food loss in the first place [45,46].

While the benefits are clear, the pathway to implement-

ing circular economy strategies is complicated; current

estimates suggest just over 3% of food is recaptured and

just over 30% recycled annually in the U.S. [47�]. The

next sections synthesize literature and discuss future

research outlooks on the human and physical infrastruc-

ture systems at the heart of these interactions. Here,

physical (or ‘human-built’) infrastructure includes all

technological and engineered systems required for food

systems to function and maintain quality of life, including

energy and water provisioning, solid waste and wastewa-

ter management, transportation, and the built environ-

ment. The term ‘human infrastructure’ became more

widespread in U.S. discourse with the Biden Adminis-

tration’s infrastructure policy goals [48], referring to work-

force capacity and human needs. We use the term more

narrowly to focus on people, governance, institutions, and

sociocultural and market forces addressing wasted food.

Lastly, we discuss ‘computational and data infra-

structures’ that facilitate food’s transformation and allow
www.sciencedirect.com
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Figure 2
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Circular economy framework for wasted food, depicting intersections and co-benefits between prevention, rescue, and valorization and between

the food system’s social, natural, technological, and governance systems.
us to model systemic interconnections and analyze

outcomes.

Physical infrastructure systems
At the core of food system infrastructure are the processes

involved in food production, manufacturing, packaging,

transportation, and distribution, which are collectively

responsible for over 100 million tons of wasted food each

year [19]. At the farm scale, some degree of food loss may

actually prevent downstream waste, by removing and re-

tilling food with defects that may spoil during handling or

be rejected and landfilled by consumers [49,50�]. Beyond

these losses, further wastes can be minimized by extend-

ing harvest [51], relaxing cosmetic standards [52], creating

economically viable routes for farmers to donate or

recover excess [53], and innovating technologies that

can improve overall efficiency through sustainable agri-

cultural intensification [54] or precision agriculture

[55,56]. In developing economies, loss reduction hinges

on basic infrastructure improvements in roads, post-har-

vest storage, and information exchanges between farms

and local markets [57]. Recently, advances in controlled

environment agriculture, including hydroponic, vertical,

and rooftop gardens and novel greenhouse systems, have

been suggested as a means to minimize waste during

production [58,59]. However, a critical research need is

proactive evaluation of such solutions to ensure that they

can feasibly be scaled to meet demand and do not create
www.sciencedirect.com 
unintended economic or environmental impacts com-

pared to conventional agriculture [60,61].

Food is a widely transported commodity, and packaging

and distribution play key roles in reducing losses and

enabling downstream loop-closing approaches. Food

packaging is necessary to prevent spoilage and maximize

shelf life, but may itself add other sustainability concerns

[62,63�]. Once packaging has served its role in the food

supply chain, it usually becomes an added waste to

manage or a contaminant in downstream food waste

treatment. One opportunity is to consider packaging

and edible material as parts of one integrated food system,

opening new research directions regarding design of

polymers that are durable during transport and distribu-

tion but then can degrade at the same time scale and

within the same processes as the food scraps with which

they are commingled [64�,65,66]. However, despite

recent advances in degradable bioplastics, broader

research is required to understand their suitability for

treatment in existing composting and anaerobic digestion

infrastructure [67�,68] and to evaluate consumer food

safety for novel materials and applications.

Transport infrastructure is a critical component of all

three circular economy approaches for wasted food. Mar-

ket forces and the dynamic urban landscape have resulted

in locations with limited grocery store access, forcing

consumers to make tradeoffs between location,
Current Opinion in Environmental Sustainability 2022, 54:101151



4 The role of infrastructure in societal transformations
affordability, and quality of food [69], possibly limiting

broader adoption of prevention and rescue strategies.

Transportation is also central to downstream manage-

ment of surplus and wasted food, which typically involves

source separation followed by transportation and distri-

bution (for food rescue) or transportation, pre-treatment,

conversion, and distribution of the biofuels, energy, or

other products ultimately recovered (for valorization)

[70]. Food pickup and routing can be particularly difficult

in urban settings characterized by congestion and narrow

streets. Advances in logistics and systems design will be

critical to improving efficiency. For example, many food

rescue business models leverage digital platforms to

create micro-networks used to collect and redistribute

food [71]. Emerging businesses in this space are often

small, and models for upscaling and partnering can

address inefficient transportation and logistics [72] or

establish networks of sufficient size to make food waste

hauling economically viable [73].

Even with expanded efforts to narrow and slow food

system resource loops, some waste will be inevitable,

requiring significant expansion of waste management

infrastructure [74]. This infrastructure must be resilient

to variability in wasted food composition [75] and gener-

ation volume [76,77]. Siting new food waste recovery

facilities must balance competing objectives, including

local regulations, transport costs, revenue sources, public

opinion, environmental justice and equity concerns, and

downstream systems to treat residual organic waste after

the primary conversion process [70,78]. A central chal-

lenge is ‘matching’ the heterogeneous food waste stream

to the valorization technology and associated infrastruc-

ture that can recover the most value with the lowest

economic cost and environmental impact [79�]. The

aim is twofold: creating products that displace fossil

fuel-derived chemicals or energy sources, while also

diverting food waste from landfills [80,81]. Revenues

for firms operating waste-to-value systems arise both from

charging tipping fees to food waste generators and from

selling the produced electricity, natural gas, or bio-pro-

ducts [74,82].

Waste-to-infrastructure matching is challenging because

some feedstocks are better suited for incumbent technol-

ogies, such as anaerobic digestion or composting, while

others are ideal for emerging processes, such as thermo-

chemical treatment [83] or conversion to high value

chemicals [84]. For example, relatively dry waste

(<30% moisture) can be converted at much higher energy

efficiency via gasification or pyrolysis [85,86]. The result-

ing mix of products from valorization may include syngas,

biochar, specialty chemicals [87], fertilizers [88�], com-

post, biofuels, electricity, or other bio-based products. A

choice among these options will be governed by the firm’s

business model, social goals, market prices for co-pro-

ducts, local electricity and fuel demand, and climate and
Current Opinion in Environmental Sustainability 2022, 54:101151 
renewable energy policy incentives and targets [89,90].

One emerging opportunity is for integration across tech-

nologies to create food waste ‘biorefineries’ that convert

multiple incoming feedstocks into varied co-products

[91,92]. This model may provide economic benefits to

firms, particularly in response to fluctuating product

demand and prices [93,94]. Further research is needed

to investigate the technical performance of food waste

valorization pathways and the environmental, economic,

and social tradeoffs between alternatives [95,96�].

Technology choice and infrastructure siting also intro-

duce new interdependencies between critical regional

infrastructures, but their interconnections have not been

exploited for benefit when it comes to wasted food. The

interactions of food and waste with broader regional

infrastructures, such as energy, water, and transportation,

can help identify hot spots where these linkages represent

vulnerabilities to system resilience [97] and opportunities

for joint interventions for cost-effective resource savings

[98,99], along with accounting for cascading effects

between infrastructures [100]. Thus, the interdependen-

cies of waste systems with regional infrastructures that are

currently seen as vulnerabilities can become targets of

opportunity.

Human infrastructure systems
Transforming the food system through innovations in

human infrastructure means shifting the capacities,

incentives, and default actions that lead to poor waste

prevention and management. While we focus here on

humans’ infrastructural role as consumer and worker,

humans are, of course, more than infrastructure. The

multi-dimensionality of people’s lives beyond this role

is core to the challenges and opportunities we consider, in

consumer behavior, industry practice and policy, educa-

tional institutions, and the workforce.

With about 37% of U.S. wasted food directly attributable

to decisions made by consumers in their homes and

another 29% in retail and foodservice [47�], the human

infrastructure shaping consumer behavior is ripe for trans-

formation. A 2020 National Academies of Science, Engi-

neering and Medicine report adopts a systems framework

for understanding consumer food waste causes and solu-

tions, and recommends pathways for transforming human

infrastructure to reduce waste in the United States [25��],
while highlighting a significant research gap in interven-

tion evaluation. While the report focuses on the U.S.,

findings are applicable for other high income countries.

One pathway focuses on directly changing behavior by

addressing consumer motivation, ability and opportunity

to reduce waste [101,102], including via a customizable

Federal platform for behavior change campaigns. This

pathway acknowledges the importance of cultural and

educational infrastructures in amplifying behavior change
www.sciencedirect.com
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[103,104], with media influencers increasingly shaping

social norms. A second pathway suggests changes to

policy and industry practice that support consumers to

make less wasteful decisions. For example, food date

labels have been implicated as a cause of wasted food

[17,105]; the National Academies report recommended

parties work towards Federal harmonization of date labels

with accompanying education programs [106�]. Outside

government policy, many commercial food enterprises

are increasingly engaged with broad voluntary sustain-

ability certification programs [107]. Realizing these trans-

formations, however, will require parallel research on

efficacious and scalable waste reduction interventions

[108�] and new technologies that support reduction and

redirection of wasted food.

The education sector is a critical enabler of the pathways

discussed above and a cornerstone of human infrastruc-

ture, with nearly 140 000 primary, secondary and post-

secondary educational institutions in the U.S. [109]

poised to address wasted food through schools’ triple role

of educating, socializing, and feeding students. Schools

generate tremendous food waste due to the volume of

meals served (29+ million US children in 2019 [110]),

children’s preferences, food quality, and the ways meals

are implemented [111]. Food waste education in schools

can shape a generation’s behaviors and attitudes through

developing food and food waste literacy at a time of

plasticity when lifelong behavioral patterns are estab-

lished, as well as contributing to current household prac-

tices [25��]. Particular benefit may come from linking the

classroom and cafeteria [112,113]. Several school food

waste interventions have shown potential, including

classroom and teacher education [114]; engaging students

in intervention design [115�]; and using nudges to shift

portion size [116]. Suggestive evidence exists for other

types of interventions, including tracking and communi-

cating about waste through audits [113], improving meal

quality [117,118], and scheduling recess before lunch

[119]. Overcoming the barriers to broader adoption of

these approaches will require research in two main

domains: well-designed studies to clarify what interven-

tions work, and in what context, and to test at scale; and

research to quantify co-benefits on critical outcomes,

including cost savings, educational alignment, and staff

burden.

The food waste human infrastructure comprises nearly

22 million workers in the U.S. alone, many of whom are

contracted rather than directly employed [120], plus an

additional large group of waste management workers in

governmental and private settings. Workers engage in

food waste prevention and management through both

direct job roles and indirect opportunities that arise or

which can be created with sufficient motivation, oppor-

tunity, and ability to take action. While the chance to ‘do

good’ through work cannot substitute for sufficient pay or
www.sciencedirect.com 
good working conditions, it may enhance feelings of pride

and improve workplace climate [121�]. Intervention

research suggests engagement is a valuable strategy for

addressing waste of food [25��]. While addressing waste

can benefit workers, it also carries risks. In some food and

waste management sectors, injury and illness rates exceed

twice the national average, while workers in waste man-

agement, truck transportation, and waste collection have

fatalities four to eleven times the US average [44].

Several challenges limit the transformations needed.

First, there is virtually no research on worker engagement

to address waste of food. Second, formative studies sug-

gest that workers and their managers often differently

perceive protocols, challenges, and opportunities for

addressing food waste [121�], but given the low level of

workforce power and high turnover, managers may

eschew worker input into responses. Employers often

have low incentives to reduce workers’ risks, due to

low regulatory enforcement and absent standards, and

opportunity to avoid legal responsibility for contract

worker injuries [122]. Research needs include gaining

insight directly from frontline workers to understand their

perceptions of challenges, hazards, and specific strategies

that could be adopted to improve waste prevention and

management; piloting and testing worker-engaged inter-

ventions in a range of regional contexts and workplace

types; and examining co-benefits and co-harms of inter-

ventions for workers, firms, and society, including spill-

over effects such as waste prevention in workers’ personal

lives. In particular, cost-benefit assessment may help

make the case to employers to adopt interventions.

Approaches and theories used in related fields such as

medical errors and food safety should also be evaluated.

Computational and data infrastructures
Human and physical infrastructure systems give rise to

complex interactions that are challenging to model or

assess but important to capture to ensure that transforma-

tions lead to overall sustainability benefits and avoid

unintended consequences. This challenge is further com-

pounded by the lack of high quality data to characterize

the magnitude and drivers of wasted food flows. This

challenge presents an opportunity for research to expand

and enrich computational infrastructures by leveraging

advances in data science and modeling.

Food system data are often fragmented across case studies

of varying scales from household to aggregate national

food production and loss data. Existing data on wasted

food in the US do not uniformly capture the full food

system and are subject to significant variability in

accounting method [39�] and food flows [77] and reliance

on self-reporting by consumers or organizations [123�].
Interdisciplinary collaborations can expand and refine the

toolbox of data collection approaches [124�], while part-

nerships with governmental, commercial, and non-
Current Opinion in Environmental Sustainability 2022, 54:101151



6 The role of infrastructure in societal transformations
governmental actors are needed to validate and visualize

new data streams to facilitate decision making. Such

efforts require an architecture supporting data harmoni-

zation to capture food system complexities [125�] in the

context of wasted food.

Ideally such a data architecture would be flexible, multi-

depth, and geo-referenced to facilitate multiscale analy-

ses and model-building efforts. Flexibility is required as it

must both store diverse qualitative and quantitative data

types and content (waste quantities; nutrient and chemi-

cal compositions; technology specifications; economic,

financial, environmental, and social outcomes) and enable

data-driven research efforts. Geo-referencing enables

regionalizing and localizing models and analyses and

articulating spatial linkages and interactions. Multi-depth

capabilities are crucial to integrate micro to macro data

layers and accommodate different granularities. To

ensure harmonization across data sources and facilitate

modeling and assessment, relevant ontologies for food

[126] and wasted food [127] must be expanded and linked

to capture potential waste sinks (landfills, incinerators),

prevention activities and outcomes (campaigns, interven-

tion effect sizes), and circular material flows (rescue,

valorization) embedded in the various infrastructure sys-

tems detailed above.

Even with these data advances, two main knowledge gaps

still remain in computational modeling of wasted food in a

circular economy context: explicitly representing the

interactions within and beyond the food system and

quantifying environmental, social, and health outcomes

and tradeoffs that result from these interactions and

potential solutions. Food systems and their interactions

are often represented with input output models (I–O)

[128�], computable general equilibrium (CGE) models

[129], or within integrated assessment models (IAMs)

[130]. While I–O models can provide bottom-up repre-

sentations of exchanges between sectors, they are based

on linear input-output matrices, and are aggregate and not

granular to specific processes. Further, I–O models hold

macroeconomic variables such as population change and

economic growth as exogenous. CGE and IAMs are top-

down models that study the economy as a whole, and can

represent macroeconomic changes, but cannot represent

detailed bottom-up processes such as agricultural produc-

tion technologies, anaerobic digestion placement deci-

sions, and transportation infrastructure.

Life cycle assessment (LCA) can be applied to create

estimates of metrics relevant to sustainability, including

cumulative emissions and damages that arise from the

food supply chain processes and from food loss and waste

[131�]. Historically, LCA research has used data-intense

process models to characterize mass and energy flows

associated with specific industry or infrastructure systems,

but has less frequently captured economic [132] or social
Current Opinion in Environmental Sustainability 2022, 54:101151 
[133�] outcomes. LCA can, however, be integrated with

economic models of food system interactions using either

I–O models (classified as ‘attributional’ because they

describe a system as is) or CGEs (classified as

‘consequential’ because they model outcomes of a simu-

lated change) [134–136]. One advantage of consequential

LCA is the ability to quantify marginal impacts of com-

plex system shifts through connected dual variables, thus

capturing potential change in food systems after inter-

ventions [137]. Yet LCA still faces a number of challenges

when applied to the food system, including the difficulty

of drawing boundaries between coupled human and

natural systems involved in food provisioning and the

potential bias of valuation methods that prioritize effi-

ciency over resilience and other desirable but difficult-to-

measure sustainability attributes [138].

Thus, we need modeling advancements that can leverage

both explicit process representation and marginal changes

as a result of decisions or interventions. Studies can

accomplish these goals by integrating the process repre-

sentation of optimization models, the aggregation of I–O

models, and the marginal, nonlinear representation of

equilibrium models. Capturing the full spectrum of food

system sustainability [139] will require both novel LCA

approaches applied to circular economy solutions [140]

and the integration of complementary methods that

account for resilience and equity [138]. As an example,

if food waste valorization via anaerobic digestion provides

an energy source in a region, we could quantify systemic

sustainability outcomes while accounting for both supply

and demand changes in the energy sector [74]. Such

advancement would allow flexibility to expand modeling

capabilities to quantify uncertainty [141] or to further

couple analyses with climate [142,143], hydrology

[142,144], and integrated assessment models [145] as

has been done with other sectors.

Conclusion and research outlook
A safe, sustainable, resilient food supply is a necessary

facet of a sustainable future. Research described herein

offers the potential to transform the food system by

preventing or minimizing food loss, managing unavoid-

able food waste, and improving resilience, public health,

equity and sustainability co-benefits. However, the solu-

tions encompassed within the circular economy frame-

work described here also face broad challenges to adop-

tion. One such challenge is the complexity underlying the

infrastructures that comprise the food system and their

interactions across other technical, social, institutional,

and ecological systems. Here, we propose that a transfor-

mational approach will involve identifying critical food

system infrastructure components, testing interventions

aimed at preventing, rescuing, or valorizing wasted food,

and ultimately assessing the systems-level outcomes

using advances in data science and modeling methods.
www.sciencedirect.com
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However, carrying out research to achieve these visions

faces broader barriers. For example, identifying and test-

ing human infrastructure solutions will require deep

collaboration between academic researchers and food

system stakeholders that go beyond traditional academic

structures. Similarly, creating the data and models

required to analyze physical infrastructure interactions

will require collaboration across disparate fields and

knowledge domains. The emerging domain of conver-

gence science provides an approach to ‘holistically under-

stand, create, and transform a system’ [146�] through

team-based collaborations organized around complex

societal challenges. Carrying out research within this

framework offers a path to build generalizable insights

that are transferable to other infrastructure systems and to

realize a circular food system with less resource use and

waste and greater benefits to societal health and well-

being.
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The authors analyze data from five studies where household food waste
was assessed using both food waste diaries and waste compositional
analysis (bin digs) and confirm that diaries systematically underestimate
the amount of waste from the bin digs by 7% to 40%, undermining their
efficacy in tracking food waste and assessing food waste reduction
interventions. Several reasons are hypothesized for diaries underesti-
mates: behavioral reactivity, measurement bias, misreporting and self-
selection bias.
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