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a b s t r a c t 

This paper proposes a new pipeline to perform early action detection from skeleton-based untrimmed 

videos. Our pipeline includes two new technical components. The first is a new Dynamic Dilated Convo- 

lutional Network (DDCN), which supports dynamic temporal sampling and makes feature learning more 

robust against temporal scale variance in action sequences. The second is a new semantic referencing 

module, which uses identified objects in the scene and their co-existence relationship with actions to 

adjust the probabilities of inferred actions. Such semantic guidance can help distinguish many ambigu- 

ous actions, which is a core challenge in the early detection of incomplete actions. Our pipeline achieves 

state-of-the-art performance in early action detection in two widely used skeleton-based untrimmed 

video benchmarks. The source codes are available at: https://github.com/Powercoder64/DDCN _ SRM . 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

Early action detection is to identify an action before the ac- 

ion is completed. It has many applications in smart surveillance 

ystems, robotics, and autonomous driving [1] . In practical ac- 

ion detection tasks, the detection needs to run on a streaming, 

ntrimmed video to identify both the action type and its start- 

ng/ending frames. Such a detection is challenging, as different ac- 

ions may have different paces and lengths, and different actions 

ould have similar beginning motions, making reliable prediction 

ifficult. Because of these issues, standard action recognition tech- 

iques, which run on complete, trimmed video clips, often do not 

pply effectively here. 

Temporal Scale Variance. In different videos, similar or the 

ame actions can have different lengths, as different people may 

erform actions (or different portions of action) at different paces. 

uch a property of actions, so-called “temporal scale variance”, has 

een shown to hamper the accuracy of many action detection sys- 

ems [2] . An example is shown in Fig. 1 . When conventional action

etection networks use static temporal windows to process a cer- 

ain number of frames and detect actions, a long action such as 

he “triple jump” only gets partially sampled, and not all the key 

oses in the key stages of the run, hop, step, and jump will be ob-
∗ Corresponding author. 
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erved. And furthermore, if the pace of the video changes, the pre- 

etermined sampling of frames is often not optimal. Consequently, 

his action is often identified as a “sprint” or “long jump” action. 

One way to tackle long videos with temporal scale variance 

s to capture the most representative frames, or keyframes, from 

ideos. However, existing key frame extraction approaches need 

 separate module to detect keyframes. Training such a module 

s non-trivial [3] , and often rely on a large amount of expensive 

anually labeled data. Some recent methods propose to develop 

elf-supervised keyframe detection such as Self-attentive networks 

4] or Collaborative Learning [5] to circumvent expensive manual 

abeling. But these methods still have two limitations: (1) they are 

omputationally inefficient , and (2) they capture features from indi- 

idual key-frames ignoring the temporal dependencies among them. 

irst, having a computationally efficient system is critical since the 

rediction is expected to be made as early as possible and before 

he action is completed. Second, modeling temporal dependencies 

s important in action analysis [6] as actions are about the changes 

n a person’s movements in the temporal dimension. 

Another strategy to handle temporal scale variance is through 

sing Temporal Dilated Convolutional Networks (TDCN) [7] . The 

ain idea of TDCN is to use a hierarchical temporal structure. 

ifferent time intervals, as sub-parts of the hierarchy, are as- 

igned to different convolutional layers. With different layers of 

he TDCN network extracting features using different tem poral in- 

ervals, TDCN can better detect incomplete sequences with miss- 

ng frames. Recent TDCN design often adopts an exponential di- 

ated structure, and this allows it to capture long-term temporal de- 

https://doi.org/10.1016/j.patcog.2023.109595
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
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Fig. 1. An example of the temporal scale variance issue: A long action class “triple jump”, and the consequent incorrect action detection. 

Fig. 2. Static temporal sampling: different sampled frames will be extracted from similar action sequences with different paces. Dynamic temporal sampling: frames are 

more consistently sampled according to the paces. 
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endencies . It also shares weights between different convolutional 

ayers, and this makes it efficient in processing long untrimmed 

emporal sequences [8] . TDCN has been used to achieve state-of- 

he-art performance in handwriting recognition [9] , sign language 

ecognition [8] , and action recognition [10] . However, most exist- 

ng TDCN adopts a (static) temporal sampling , where the intervals 

re pre-designed in a heuristic manner, based on important frames 

f actions following standard paces. Consequently, when the given 

ction has a different pace, existing TDCN could fail to recognize 

hem correctly. 

We propose a new Dynamic Dilated Convolutional Network 

DDCN) to tackle the temporal scale variance in untrimmed ac- 

ions. Specifically, we enhance the TDCN with a new dynamic 

emporal sampling scheme. Without needing to perform an extra 

eyframe extraction, the DDCN is an end-to-end network without 

ringing in much latency during online prediction when processing 

ong untrimmed videos. 

Through training, DDCN aims to find the optimal temporal sam- 

ling distribution and store them in a set of channels, so that ac- 

ions with temporal scale variance (e.g., different paces, framer- 

tes) can be better modeled. Fig. 2 illustrates the differences be- 

ween the static and dynamic temporal sampling in dealing with 

ideos with temporal scale variance. When using the static tem- 

oral sampling, from two similar actions with different paces, we 

et quite different sampled frames (in green). Consequently, build- 

ng a stable and robust action feature becomes harder. On the 

ther hand, when utilizing our dynamic temporal sampling, a more 

daptive sampling on frames (in red) can be obtained. Such a bet- 

er temporal sampling makes the robust feature modeling of action 

nder temporal scale variance noticeably easier. 
2 
We redesigned the standard DCN’s hierarchical dilated structure 

o make it more effective in dealing with temporal scale variance. 

ur new design includes our novel dynamic temporal sampling, 

ynamic dilated layer aggregation algorithm, and a new loss func- 

ion to accommodate the dynamic temporal updates in our DDCN. 

Semantic Ambiguity from Similar Motions. Many actions have 

ntrinsically similar motions. Some examples can be seen in Fig. 3 , 

here “opening a cabinet” (row-1), “opening a fridge” (row-2), and 

opening a microwave” (row-3) all involve similar motions. These 

imilar motions are hard to differentiate in current action recogni- 

ion or detection systems, especially if an early prediction on in- 

omplete actions is needed. Our observation is that relevant ob- 

ects in the scene, or we call semantic references , can provide use- 

ul information to help tackle such ambiguity. For example, here 

y using semantic references, “cabinet”, “fridge”, and “microwave”, 

hese similar motions can be distinguished. 

Existing action detection/recognition strategies have not ef- 

ectively modeled and used semantic references. Current strate- 

ies can be classified into two main categories: skeleton-based 

nd image-based methods. (1) The skeleton-based methods pre- 

ict actions using skeleton joints. Hence, semantic references from 

ackground contents are not considered. (2) The image-based ap- 

roaches use 2D convolutions to encode action-related informa- 

ion in the images. Certain background information may be en- 

oded into action features, but they are still insufficient to effec- 

ively model semantic reference information. This is because they 

re not designed to explicitly model semantic relevance between 

eference objects and actions; consequently, they often include a 

ot of semantically irrelevant background information, which actu- 

lly reduces the expressive power of the action features [4] . 
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Fig. 3. An example of ambiguity in detecting similar-looking actions: “opening a cabinet” (above row), “opening a fridge” (middle row), and “opening a microwave” (bottom 

row). The actions movements look similar without the corresponding semantic references, “cabinet”, “fridge”, and “microwave”. 
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In this work, we propose to develop a new “Semantic Refer- 

ncing Module” (SRM) to learn and utilize semantic reference in- 

ormation to help reduce ambiguity from similar-looking incom- 

lete actions. Unlike most traditional image-based strategies, our 

ethod can better detect/select action-relevant semantic informa- 

ion in images and discard irrelevant information. This can signifi- 

antly increase early action detection accuracy. 

Our SRM includes several components to capture the correla- 

ions between semantics and actions. We first capture an initial 

et of informative features from action videos and then use a rec- 

mmendation system (i.e., Implicit Matrix Factorization (IMF) al- 

orithm) to discard less important features. We redesign the IMF 

lgorithm, commonly used for recommendation tasks in online 

tores, and integrate it into our SRM to be effective for early action 

etection. Finally, we convert the recommendation system output 

o action detection scores. 

The main contributions of this paper are: 

1) We propose a novel Dynamic Dilated Convolutional Network 

(DDCN) to handle the temporal scale variance in incomplete ac- 

tions from untrimmed videos. 

2) We design a new Semantic Reference Module (SRM) to suggest 

relevant semantic objects to distinguish similar-looking actions. 

3) We conducted thorough experiments on untrimmed action 

benchmarks, PKU-MMD and OAD. Combining the above two 

new designs, our proposed pipeline outperforms the state-of- 

the-art early action detection systems. 

. Previous work 

This section discusses the existing strategies related to our work 

nd the challenges we aim to overcome. First, we explain the 

nline action detection work, followed by early action detection. 

hen we discuss the previous strategies proposed to handle the 

wo main challenges in action detection and early action detection, 

hich are “Temporal Scale Variance” and “Semantic Ambiguity”. 

Online Action Detection. Online action detection aims to iden- 

ify actions in untrimmed videos in real-time. Online action de- 

ection is often performed on long videos that introduces new 

hallenges. To handle these challenges, researchers proposed dif- 

erent strategies. For example, [11] used unidirectional and bidi- 

ectional LSTMs to deal with short sequences in online early action 

etection and long sequences in offline action detection. [12] sug- 
3 
ested a Knowledge distillation strategy that transfers the knowl- 

dge from a teacher in offline shorter clips to online longer stu- 

ent clips [13] . proposed a method based on Recurrent Neural Net- 

ork (RNN) namely temporally smoothing network to smooth per- 

rame of long videos. [14] introduced an online temporal classifi- 

ation model, that jointly with an action inference graph can de- 

ect human action from long videos more efficiently. [15] modeled 

uman appearance based on the regions associated with human 

keleton joints and evaluated the temporal consistency of human 

oses in different frames in real-time. [16] suggested two novel 

odules, Temporal Label Aggregation and Dense Probabilistic Lo- 

alization (DPL) to handle the uncertain action annotations, which 

s a common issue in annotating long videos. 

Early Action Detection. Early action detection aims to identify 

ncomplete actions in streaming video sequences. Several strategies 

ave been suggested to deal with incomplete actions. 

One strategy is modeling temporal information hierarchically. 

ierarchical information can be levels of movement [17] , hierarchi- 

al correlations between partial sequences and corresponding tem- 

oral segments [18] , and hierarchical temporal correlations among 

arious action classes [19] . These algorithms however are compu- 

ationally expensive and mostly require a separate step to extract 

emporal hierarchical correlations in actions. A more efficient algo- 

ithm to capture temporal information online is desirable. Another 

trategy to enhance the detection of incomplete actions studies is 

sing information captured from full videos. To achieve this, sev- 

ral algorithms have been proposed such as deep sequential con- 

ext network (DeepSCN) [20] and teacher-student learning scheme 

21] . While using information from full videos can be beneficial for 

arly action detection, besides its computational complexity issue, 

t often does not handle long ambiguous actions, as an example 

iven in Fig. 2 . 

Temporal Scale Variance in Action Segmentation. Tempo- 

ally localizing the action in untrimmed videos is referred to 

s action segmentation . A major challenging issue towards re- 

iable action segmentation is handling temporal scale variance. 

22] padded the videos to a fixed size and utilized an Autoen- 

oder to segment actions in videos [2] . suggested a Deformable 

emporal Residual Module to learn multi-scale temporal informa- 

ion through multi-scale pooling layers. [23] introduced a graph 

onvolutional network to convert the varied-size graphs to fixed- 

ize feature maps [24] . proposed to restrict the duration of actions 

o reasonable lengths. These existing action segmentation meth- 
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Fig. 4. Offline phase: in this phase, we first use the “Semantic Reference Detector” identify semantic references in the scene. Next, in the “Offline Semantic Refer- 

ence Processing” step we extract the initial set of semantic features. Next, we use a recommendation system to select the most informative semantic features that 

describe the co-existence between semantic references and actions. Then we convert the recommendation system outputs to the “Offline Semantic Reference scores”

which are used to predict the actions. On the other side, we trained our DDCN and dynamic sampling based on skeleton pose sequences and store the network 

weight parameters. 
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ds have some limitations, including (1) expensive computational 

ost for real-time applications, (2) only capable to handle com- 

lete action sequences, and (3) failing to handle significant tem- 

oral scale variance. For early action prediction, we need an ef- 

cient pipeline that runs on incomplete sequences with temporal 

cale variance. 

Temporal Scale Variance in Action Detection. Performing both 

ction segmentation and classification in untrimmed videos is of- 

en referred to as action detection in literature. 

Some action detection systems extract keyframes/keyposes from 

ntrimmed action videos and utilize them to perform classification 

nd tackle temporal scale variance. Self-attention networks were 

dopted in some pipelines [25] to detect keyframes in untrimmed 

ction videos. While [4] only used a temporal attention network, 

25] utilized two spatial and temporal attention networks to de- 

ect temporal keyframes and spatial key-pixels. The spatial fea- 

ures are extracted using a Convolutional Neural Network (CNN), 

nd temporal features are computed using a Recurrent Neural Net- 

ork (RNN). [26] suggested an approach to detect early actions in 

ontinuous untrimmed videos by selecting keyposes. To pick the 

eyposes, each pose is matched with those template poses in the 

atasets using the Dynamic Time Warping (DTW) algorithm; then 

he Markov chain is exploited to classify the features extracted 

rom keyposes. 

Semantic Ambiguity in Early Action Detection. The ambigu- 

ty of similar-looking actions is a critical challenge in early action 

etection. To resolve this issue, several solutions have been sug- 

ested such as using action-specific intermediate features [27] and 

emembering hard-to-predict actions [28] . While these algorithms 

re effective in certain scenarios, they use only temporal informa- 

ion to resolve the ambiguity in similar-looking actions. However, 

any ambiguous actions can be only distinguishable by relevant 

patial semantic information. An example of such similar-looking 

ctions is shown in Fig. 3 . 
4

. Methodology 

.1. Overview and terminologies 

Our proposed pipeline consists of an offline ( Fig. 4 ) and an on-

ine ( Fig. 5 ) phase. 

Offline Phase. During the offline phase, the input of our 

ipeline is video sequences V D = { V k , k = 1 , 2 , . . . , I} from the ac-

ion dataset. Our DDCN module takes as input the skeleton data, 

hich can be obtained from the action videos through pose es- 

imation (using, e.g., OpenPose [29] in our work), and then ex- 

racts different combinations of dynamic sampling points to en- 

ance the temporal samplings for effective classification of differ- 

nt action classes c k ∈ C, where C is the set of action classes. The 

xtracted sampling positions and weights are stored in multiple 

hannels. More details of this proposed dynamic sampling are dis- 

ussed in Section 3.2 . In the SRM module, first, we train an ob- 

ect detector using a Semantic Reference Detector [30] (green box in 

ig. 4 ) to identify reference objects that co-exist with correspond- 

ng actions in V D . Next, we extract a list of offline semantic refer- 

nce attributes X off, which consists of occurrence frequency of ref- 

rence objects (number of occurrence) p, movement (shift of refer- 

nce objects) z, and object detection confidence c. From these at- 

ributes X off we can calculate initial semantic correlation ratings 

 
cor = r m,n between each pair of reference object m and action 

lass n . A recommendation system is then adopted to refine X cor 

o get the final offline semantic reference scores S off. 

Online Phase. During the online phase, in the SRM module, 

iven an action video sequence V k = { v t , t = 1 , 2 , . . . , T } , we first

ompute the online semantic reference attributes X on which con- 

ists of similar items of X off for each frame t ∈ T . X on helps the

ipeline better predict the action in each time step 0 ≤ t ≤ T . Then,

rom X on and S off, we compute the online semantic reference scores 
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Fig. 5. Online phase: in this phase, we first use the “Semantic Reference Detector” to identify semantic references in the scene. Next, “Online Semantic Reference Processing”

extracts the set of semantic features which are compared to the previously calculated offline semantic reference scores to compute the “Online Semantic Reference Scores”. 

These scores indicate the joint probability of detected semantic reference occurrence with different action classes. Simultaneously, our DDCN produces the “Action Detection 

Scores” by processing online skeleton sequences and trained dynamic sampling. Finally, we use a “Score Weighting” strategy to compute the “Final Class Score” based on the 

two described scores. 
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on for each action class. S on indicates the correlation scores of 

nline detected objects with respect to each action class. Concur- 

ently, in the DDCN module, given the action skeleton sequence 

 
k = { y t , t = 1 , 2 , . . . , T } whose joints are computed from V k , the

DCN uses the dynamic samplings learned in the offline stage to 

alculate the final action detection scores A on . 

The final action detection scores F is the weighted summation 

f the two aforementioned scores. In the following, we will elabo- 

ate on the two main components of this pipeline. 

.2. Dynamic dilated convolutional network (DDCN) 

A Temporal Dilated Convolutional Network, often abbreviated as 

ilated Convolutional Network (DCN), has recently been developed 

s a temporal deep-net structure and shown to outperform RNN 

nd Bi-LSTM [6] in processing action data [6] and some other 

emporal sequences. Another benefit of using DCN is that it allows 

s to build deeper networks of less computational cost to capture 

ong-range temporal dependencies and obtain better reliability on 

mall-size datasets [10] . By expanding the receptive field, the DCN 

an capture long-term temporal dependencies effectively and in- 

rease the performance and efficiency of dense prediction archi- 

ectures [31] . 

A DCN is a stack of dilated convolutions whose kernel elements 

xpand consecutively. A DCN utilizes temporal sliding windows on 

emporal sequences to capture temporal information. The sliding 

indows are defined within the fixed temporal lengths and are a 

ollection of temporal samplings whose inputs are consecutive time 

rames. In a DCN, the temporal windows follow fixed structures 

nd are stacked as a power of 2 of dilated steps d s (i.e., 1, 2, 4, 8,

..). Consecutive temporal samplings from different sliding windows 

re assigned to different convolutional layers. 
5

In a conventional DCN, the convolutions are applied over two 

ime steps, t and t − s . Thus the kernel weights can be represented 

s W = { W 
(1) , W 

(2) } . Therefore, we can define the dilated convolu-

ion [10] for layer l at time step t as 

 
l 
t = f (W 

(1) q l−1 
t−s + W 

(2) q l−1 
t + b) , (1) 

here q l t is the dilated convolution result on time t in layer l, s 

s the dilation rate increasing as the power of two in consecutive 

ayers, and b is the bias vector. The output of the network Q t at 

ime t is the concatenated tensor of all the dilated output layers as 

 t = [ q l t , q 
l−1 
t , . . . , q 0 t ] . 

To compute the feature maps, the convolutional operator is usu- 

lly applied to the neighboring temporal points. So, to extract con- 

olutional feature maps effectively, specifying appropriate temporal 

eighboring points is crucial. The effectiveness of the neighboring 

emporal points, and consequently, feature maps, dictate the accu- 

acy of a temporal network when modeling temporal sequences. 

n a conventional DCN, the neighboring temporal points are de- 

ned in static positions. However, such a static temporal structure 

n DCN is not always effective as it may not accommodate the tem- 

oral variance in action sequences well. When dealing with spa- 

ial and temporal variance in images or videos, dynamic networks 

32] have been shown to be more effective than static networks. 

herefore we propose a new dynamic temporal sampling to make 

he DCN adaptive to varying temporal information. Specifically, the 

DCN can more adaptively capture temporal neighboring points 

ccording to the data. 

In our DDCN, the output of each layer, for each time step t is 

ormulated in Eq. (2) . 

 
l 
t = f (W 

(1) q l−1 
t−s + W 

(2) q l−1 
t + W 

(3) q 
l−l f 
t−t f 

+ b) (2) 

ompared with the static DCN in Eq. (1) , the DDCN includes extra 

arameters of Dynamic samplings { t f , l f } that are represented with 
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Fig. 6. The comparison of performance between a conventional DCN and our DDCN in dealing with temporal scale variance. Two similar actions “writing” with different 

paces are illustrated. The green and red arrows are static and dynamic temporal samplings in different frames, respectively. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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. Here l f and t f are dynamic layer offset and

ynamic time step offset , respectively. Specifically, t f is calculated as 

 f = arg max 
�

P (c k | Y k , t f ) , (3) 

here � = { 0 , 1 , . . . ξ} is the set of dilated integers (in our exper-
ments ξ = 8 ), c k ∈ C is the action class, and Y k is the sequence of

nput skeletons. Here 

 (c k | Y k , t f ) = arg min 
C 

Loss A , (4) 

here Loss A is the loss function of action detection. 

To ensure that the above equations are met, we train the DDCN 

o find the optimum t f ∈ � so that the following P (c k | Y k , t f ) is
aximized: 

 (c k | Y k , t f ) = sof tmax ( f (W 
A ∗ Y k + W 

f ∗ t f )) . (5)

ere f is the activation function from the final layer, W 
A is the ker- 

el weights for the input skeleton data, and W 
f is the 1D dilated 

ernel weights. 

The dynamic layer offset, l f is automatically updated based on 

 f since, in a dilated network, different time steps are by default 

ssigned to different layers. The dynamic samplings can be per- 

ormed at any time steps to adaptively capture temporal informa- 

ion. Specifically, the dynamic time step offset t f ∈ � enumerates 

n a 1D integer space Z and is updated to minimize Loss A dur- 

ng the training. So, the new dynamically sampled point can relo- 

ate to t − t f where more effective temporal features with respect 

o the previous temporal neighboring sampled points can be ob- 

ained. The output of the network at time t concatenates the out- 

uts of all the layers. 

Temporal Scale Variance. Unlike the conventional DCN that fol- 

ows a static sampling structure (static temporal sliding windows), 

ur DDCN can dynamically relocate temporal sampling structures 

o better accommodate temporal scale variance. An example for 

n action “writing” with two different paces is shown in Fig. 6 . 

n this example, when using static temporal sampling, the sam- 

led frames are different for the two similar actions with different 

aces. Such inconsistent sampling results in bigger intra-class vari- 

tion, and, consequently, reduces the action detection accuracy. In 
6

ontrast, our dynamic temporal sampling adjusts the sampling lo- 

ations on these actions. As a result, it decreases the intra-class 

ariation and enhances the action detection accuracy. 

Identification of Similar Motions. In our pipeline, reference 

bjects detected in the Semantic Referencing Module (SRM) help 

educes the ambiguity in the detection of similar motions. But here 

he DDCN also helps alleviate this action ambiguity. This is be- 

ause, during the training phase, DDCN selects the most distinctive 

emporal sampling patterns to differentiate actions in the dataset. 

n example that shows this between conventional DCN and DDCN 

s given in Fig. 7 . With the static temporal sampling (green arrows), 

wo different incom plete actions, “tearing up paper” and “reading”

re similar throughout half of the video clips. In contrast, with 

DCN, a more effective sampling (red arrows) helps distinguish 

hem in the early stage of the actions. 

.3. Semantic referencing module (SRM) 

Our proposed SRM contains an offline and an online phase. 

.3.1. Offline phase 

Semantic Reference Attributes. The aim of the offline phase 

 Fig. 4 ) is to create the offline semantic correlation scores S off. S off

s a M × N table storing the probability of correlation between the 

reference objects and N action classes. S off is used in the online 

tage to calculate the action class score S on . 

To this end, first, we train a trained reference object detector 

etwork [30] . This network calculates the offline semantic refer- 

nce attributes X off = { x i mn , m, n, i = 1 , 2 , . . . , M, N, I} where x i mn is

he reference object attribute m in action sample i of class n , and

, N, and I are the number of detected reference objects, num- 

er of action classes, and number of action samples in the action 

ataset respectively. We adopted [30] to perform reference object 

etection as it was reported to achieve the highest object detection 

ccuracy (leader-board, Oct. 2020) on ImageNet [33] , a widely used 

emantic objects dataset. Each x i mn = { p i mn , z 
i 
mn , c 

i 
mn } , and p i mn , z 

i 
mn ,

nd c i mn are occurrence frequency, movement and detection score 

f reference object m in action sample i of class n . 
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Fig. 7. The performance of a conventional DCN vs DDCN in handling the ambiguity of similar-looking actions. The conventional DCN fails, and DDCN succeeds in capturing 

distinguishing frames between two actions, ”tear up paper” and ”reading”. The green and red arrows are the fixed and dynamic temporal samplings, respectively. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Recommended Semantic References. To rank the semantic ref- 

rences for different classes, we design a recommendation scheme 

ased on the implicit matrix factorization algorithm [34] . This 

cheme is inspired by the common recommendation systems 

hich suggest items to users by considering users’ ratings through 

ser-items interactions. In our scenario, we develop this recom- 

endation system by replacing users with action classes and items 

ith reference objects. First, we calculate the initial semantic cor- 

elation ratings of each semantic reference m in each sample i 

f action class n , X cor = { r i mn , m, n, i = 1 , 2 , . . . , M, N, I} , where each

 
i 
mn is obtained by 

 
i 
mn = c i mn · (p i mn + z i mn ) (6) 

We calculate X cor based on three terms. First, the importance 

f a reference object in an action class is related to the number of 

ccurrences p i mn . Second, in many action classes, informative refer- 

nce objects are often those that are dynamic or moved with the 

ctions. Some examples can be found in Section 4.2.2 . For exam- 

le, objects with the most significant movement/shift in the action 

lasses “baseball pitch”, “biking”, and “tennis swing” (selected from 

he UCF101 dataset [35] ) are “baseball bat”, “bicycle” and “tennis 

acket” respectively. Therefore, we define the object movement z i mn 

s the second term in X cor . Third, we also consider (here by mul-

iplying) the detection confidence score 0 ≤ c i mn ≤ 1 to adjust the 

orrelation. 

The input of the recommendation scheme is the initial seman- 

ic correlation ratings X cor ; its output is the offline semantic ref- 

rence scores S off = { ˆ s mn , m = 1 , 2 , . . . , M, n = 1 , 2 , . . . , N} . 
We choose the Implicit Matrix Factorization (IMF) recommen- 

ation system [34] to calculate semantic reference scores for dif- 

erent action classes. We observed that IMF is more effective than 

ther collaborative-based recommendation systems such as Neural 

ollaborative Filtering (NCF) [36] in recommending semantic refer- 

nces for action detection (please see Section 4.2 for more details). 
7

.3.2. Online phase 

In the online phase, first, the reference objects attributes ( X on ) 

re detected using the same network [30] applied in the offline 

hase. Given S off and the X on , for each current action frame, we 

alculate the online semantic reference scores 

 
on = 

1 

Z 

M 
′ ∑ 

O m =0 

ˆ s mn , (7) 

here O is the online detected reference object, M 
′ is the number 

f online detected reference objects, Z is a normalizing factor, ˆ s mn 

s derived form S off. S on is a 1 × N vector indicating the proba- 

ilities of action frame related to different action classes 0 ≤ n ≤ N

ased on semantic references. 

Simultaneously, DDCN calculates the action detection score A on , 

 1 × N vector indicating the probabilities of action frame related 

o different action classes 0 ≤ n ≤ N. The final detection score for 

he action class n is then calculated by 

 n = W R · S on + W A · A on , (8) 

here W R and W A are scalar weighting factors for the online se- 

antic correlation and initial action detection scores. 

.4. Implementation details 

Here, we summarize the implementation details of our pro- 

osed algorithm: 

In our experiments, missing joints (due to occlusion or pose es- 

imation errors) are set to zero. 

All of our experiments are conducted using a Linux PC (Ubuntu 

8.04) with an NVIDIA GTX 1070 graphic card, Intel Xeon 24-core 

rocessor, and 32 GB of RAM. Our deep learning networks are im- 

lemented using Pytorch. 
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Fig. 8. An example of different observation ratios (100%, 90%, and 50%) on an untrimmed video clip used in our experiments. In this example, the untrimmed video clip 

includes three continuous actions:“walking”, “reading”, and “writing”. The observation ratios are calculated based on the amount of observed part at the beginning of the 

actions, where the end of actions are cut.. 
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Table 1 

Parameters used in our pipeline. 

Parameter Value Section 

Number of dilated integers ( ξ ) 8 3.2 

Temporal receptive field for DDCN 1024 3.2 

Dilated rate ( s ) 2 3.2 

Number of dilated steps ( d s ) 6 3.2 

Number of dilated layers in DDCN 10 3.2 

Number of channels in DDCN 32 3.2 

Learning Rate 1 e −5 3.2 

Number of skeleton joints ( J) 25 3.2 

Weight Decay 1 e −6 3.2 

Maximum number of subjects for OAD and PKU-MMD 1 and 2 3.2 

Maximum number of reference objects per frame 10 3.3 

Total number of reference objects ( M) 200 3.3 

Number of classes for ( N) for OAD and PKU-MMD 10 and 52 3.3 

Final detection score weights ratio ( W A /W R ) 5.7 3.2.2 

Table 2 

Comparison of the proposed early action detection pipeline with 

existing methods on the OAD dataset under different observation 

ratios. The numbers with ∗ are obtained by running the provided 

source codes, and the numbers without ∗ are from the original 

papers, and the values are listed as “–” when unavailable or ir- 

relevant. 

Method / OR 10% 50% 90% 100% 

[43] – – – 63.0% 

[41] – – – 67.0% ∗

[39] 60.0% 75.3% 77.5% 82.6% ∗

[40] 59.0% 75.8% 78.3% 82.9% ∗

[37] 62.0% 77.3% 78.8% 83.0% ∗

[6] 72.0% 81.2% 83.7% 85.8% ∗

[42] 65.5% 73.0% 81.5% 85.9% ∗

[46] – – – 87.00% ∗

[47] – – – 88.11% 

DDCN + SRM (ours) 80.2% 86.1% 89.2% 89.6% 

Table 3 

Comparison of the proposed early action detection pipeline with 

existing methods on the PKU-MMD dataset under different ob- 

servation ratios. The numbers with ∗ are obtained by running the 

provided source codes, and the numbers without ∗ are from the 

original papers, and the values are listed as “–” when unavailable 

or irrelevant. 

Method / OR 10% 50% 90% 100% 

[39] 22.9% 63.0% 74.5% 76.0% ∗

[37] 25.3% 64.0% 73.4% 75.9% ∗

[40] 19.8% 62.9% 74.9% 77.1% ∗

[48] – – – 81.5% ∗

[52] – – – 81.4% ∗

[6] 33.9% 74.1% 82.9% 85.2% ∗

[42] 26.3% 68.3% 80.1% 85.9% ∗

DDCN + SRM (ours) 39.2% 80.7% 87.1% 88.0% 
. Experimental results 

.1. Comparative results 

We compared our algorithm with the state-of-the-art ap- 

roaches. Our experiments are conducted on untrimmed 

ontinuous-streaming video clips. To test the prediction on an 

ncomplete action, we cut the ending portion of an action video 

o mimic different Observation Ratio (OR). For example, 90% OR 

eans the first 90 percent of the video sequence is available. We 

llustrated the above in Fig. 8 , where three different observation 

atios of 100%, 90%, and 50% are shown for an untrimmed video 

lip consisting of three continuous actions of “walking”, “reading”, 

nd “writing”. 

In our experiments, we used the F1 score metric based on 

rame-level prediction. We evaluated the prediction results based 

n each frame to accommodate different observation ratios in 

ntrimmed videos. The frame-level F1 score, following [1] , is for- 

ulated as 

 1(θ ) = 2 · p(θ ) × r(θ ) 

p(θ ) + r(θ ) 
(9) 

here p, and r are precision and recall, which are for frame-level 

redictions in our experiments, and θ is the frame-level action de- 

ection threshold. For the OAD dataset, using the frame-level pre- 

iction is a standard metric. For the PKU-MMD dataset, however, 

ather than its original action-level metric using the F1 score, we 

dopted the frame-level metric using the F1 score. To evaluate the 

ction prediction accuracy before the actions are completed, such a 

rame-level prediction metric is more suitable. We revised and ran 

he source codes of some representative full-sequence-based ap- 

roaches and estimated the frame-level prediction accuracy under 

arious observation ratios. 

The experiments were conducted on two widely used datasets 

f continuous untrimmed actions videos, OAD [37] , and PKU-MMD 

38] datasets. 

(1) OAD dataset [37] includes 59 long videos of continuous 

ction sequences of 10 action classes. Skeletal joints are also 

rovided together with the videos. The first 39 long videos are 

sed for training, and the last 20 videos are used for testing. 

e compared our method with [37,39] (ECCV16), [40] (CVPR17), 

41] (WACV17), [42] (WACV19), [43] (ICASSP17), [44] (TCSVT18), 

6] (TPAMI19), [45] (TBCS2021), [46] (DT2021), and [47] (ICPR21). 

he experimental results for the OAD dataset are illustrated in 

able 2 . As shown in this table, our proposed DDCN + SRM outper- 

orms the state-of-the-art methods on the accuracy of early action 

etection. Especially when the observation ratio is low (i.e., 10%), 

DCN + SRM is significantly better than the others. 

(2) PKU-MMD dataset [38] consists of 1076 long videos from 51 

ction categories, among which we used the cross-subject scenario 
8 
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Table 4 

Comparison of the Dynamic DCN and a conventional DCN using SRM and different recommendation systems (NCF and 

IMF) on the OAD dataset under different Observation Ratios (ORs). In this table, the DCN and DDCN encode the pose 

features while SRM-NCF and SRM-IMF capture object contexts. 

Modules/OR 10% 20% 30% 40% 50% 90% 100% 

DCN 68.5% 70.7% 73.8% 74.8% 75.9% 80.3% 81.1% 

DDCN 71.8% 73.5% 76.0% 77.9% 79.0% 83.4% 85.3% 

SRM-NCF 60.1% 60.9% 62.0% 63.2% 64.7% 68.1% 72.0% 

SRM-IMF 64.3% 65.0% 67.1% 67.9% 69.0% 73.3% 77.1% 

DCN + SRM-NCF 68.6% 68.8% 71.0% 74.2% 76.1% 80.6% 81.6% 

DCN + SRM-IMF 71.3% 73.0% 76.4% 79.4% 80.0% 84.7% 85.2% 

DDCN + SRM-NCF 72.0% 74.0% 76.3% 78.5% 79.3% 83.8% 85.7% 

DDCN + SRM-IMF 80.2% 81.2% 83.9% 84.6% 86.1% 89.2% 89.6% 

Table 5 

Comparison of the Dynamic DCN and a conventional DCN using SRM and different recommendation systems (NCF and 

IMF) on the PKU-MMD dataset under different Observation Ratios (ORs). In this table, the DCN and DDCN encode the 

pose features while SRM-NCF and SRM-IMF capture object contexts. 

Modules/OR 10% 20% 30% 40% 50% 90% 100% 

DCN 30.8% 48.6% 55.0% 66.5% 73.9% 80.0% 81.6% 

DDCN 34.1% 51.9% 57.7% 70.4% 76.0% 83.3% 84.1% 

SRM-NCF 22.4% 34.0% 44.8% 51.2% 59.3% 68.0% 69.9% 

SRM-IMF 25.9% 36.3% 51.9% 58.9% 62.6% 73.7% 75.6% 

DCN + SRM-NCF 30.9% 39.0% 58.3% 66.0% 73.9% 80.1% 81.7% 

DCN + SRM-IMF 35.0% 47.1% 63.3% 70.2% 77.8% 83.9% 85.6% 

DDCN + SRM-NCF 34.1% 45.0% 63.1% 69.7% 76.1% 83.5% 84.4% 

DDCN + SRM-IMF 39.2% 52.4% 60.0% 74.2% 80.7% 87.1% 88.0% 
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Fig. 9. DDCN’s performance gain (y-axis) under different temporal scales. Here the 

temporal scale variance is described using the standard division (x-axis) of the 

video lengths (frame #) of each action class in the OAD dataset. 
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ith 946 and 130 videos for training and testing data, respectively. 

e compared our method with [37,39] (ECCV16), [40] (CVPR17), 

48] (TIP18), [6] (TPAMI19), [42] (WACV19), [49] (EITCV20), 

50] (ICPR21), [51] (IJARS21), [52] (ICMM), and [53] (CVPR22). The 

esults are shown in Table 3 . DDCN + SRM also outperforms exist- 

ng methods. 

.2. Ablation study 

We conducted several ablation studies on (1) different compo- 

ents of the proposed approach, (2) SRM for semantic references, 

3) DDCN on temporal scale variance, and (4) weight weights in 

he loss function. 

.2.1. Analysis on different components 

In Table 4 and Table 5 , we illustrate the network performance 

hen using dynamic sampling and using different recommenda- 

ion systems for OAD and PKU-MMD datasets, respectively. These 

esults show that with dynamic samplings, DDCN improves the 

erformance of the conventional DCN in early action prediction. 

he Implicit Matrix Factorization (IMF) algorithm [34] is more ef- 

ective than other collaborative-based methods, such as Neural Col- 

aborative Filtering (NCF) [36] in sorting semantic references. 

The traditional DCN and our DDCN are used to extract human 

keleton pose information. Meanwhile, the SRM module, with IMF 

nd NCF recommendation systems, are used to capture object con- 

exts (semantics). The experimental results indicate that (1) using 

ose information (DDCN) alone contributes more to the perfor- 

ance gain, than using object contexts (SRM) alone; and (2) the 

ombination of DDCN and SRM-IMF leads to the best overall per- 

ormance. 

.2.2. Semantic references 

Table 6 illustrates the normalized covariance matrix of the cor- 

elations between the semantic reference objects and actions. The 

emantic reference O m for action class a n is rated based on the 
9 
um of the recommended probability of semantic reference object 

ccurring in action class sample i of class n : 

I 
 

i =0 

ˆ s i mn = 

I ∑ 

i =0 

P (O m | a i n ) , (10) 

here I is the number of samples in class n . In our experiments, 

or the OAD dataset (where actions are captured in a controlled 

nvironment), we have detected total of 29 semantic reference ob- 

ects for 10 action classes. 

As can be seen in Table 6 , action classes are often correlated 

ith unique combinations of semantic references. These combina- 

ions help distinguish different action classes. Many of these se- 

antic references are logically connected to corresponding actions. 

or example, the action “wiping” in the kitchen in this dataset 

urns out to be highly correlated with “microwave”; “Eating” and 

bowl” are highly correlated. 

We also tested the recommendation system on the UCF101 

ataset [35] , a widely used action videos dataset that includes a 

reat variety of semantic objects. To train the recommendation sys- 
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Table 6 

Covariance matrix of the correlations between the actions (A) and semantic reference objects (O) in the OAD dataset. 

The action labels are abbreviated as: Drinking (Dr), Eating (Ea), Writing (WR), Opening Cupboard (Cu), Opening Mi- 

crowave (Mi), Washing (Wa), Sweeping (Sw), Gargling (Ga), Throwing Trash (Tr), and Wiping (Wi). 
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em model, we utilized all the videos in the dataset with a sam- 

ling rate of 5 frames per action clip. So, totally we created 63,689 

emantic reference rating samples including 101 action classes and 

9 semantic references. We show some of the recommended se- 

antic reference objects for some classes in Table 7 . Each row 

hows the “Score” values without normalization. From this table, 

e can see a strong correlation between top-rated semantic ref- 

rence objects and corresponding action classes. For example, top- 

ated semantic reference objects for action class 11, “Biking”, are 

bicycle”, “car”, “chair”, “motorcycle”, “parking meter”, and “traffic 

ight”, which are most commonly seen on the road. 
10 
.2.3. Temporal scale variance 

Fig. 9 illustrates the correlation between temporal scale vari- 

nce and accuracy improvement achieved by the DDCN compared 

o a conventional DCN. Here, the standard deviation values are ob- 

ained from the set of video length values of the sample points on 

ach action class. In this example, the standard deviation values 

how the temporal scale variance in action samples of 10 action 

lasses from the OAD dataset. A higher standard deviation value 

ndicates a higher variation in the number of frames (or tempo- 

al scale variance) for an action class. As shown in Fig. 9 , there is

 strong correlation between accuracy improvement and the stan- 
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Table 7 

Top recommend semantic references for some example classes of UCF101 dataset. 

class # class name top 1 top 2 top 3 top 4 top 5 

4 Baby-Crawling dog chair tv sports ball remote 

Score: 104.5 92.9 82.1 74.9 70.7 

7 Baseball Pitch baseball bat dog car baseball glove horse 

Score: 130.4 106.3 94.4 86.4 84.4 

11 Biking bicycle car chair motor-cycle parking meter 

Score: 128.9 109.0 98.0 80.9 76.1 

20 Brushing Teeth tooth-brush chair tie handbag dog 

Score: 107.4 99.8 90.9 84.5 80.6 

49 Kayaking boat car surf-board cow baseball bat 

Score: 117.7 107.4 98.0 80.8 76.1 

81 Skiing skis skate-board snow-board bird dog 

Score: 110.8 99.6 95.6 79.3 75.8 

92 Tennis Swing tennis racket sports ball car potted plant baseball bat 

Score: 123.4 111.0 90.7 90.2 75.0 

95 Typing keyboard laptop cup tv book 

Score: 102.9 84.6 80.9 73.5 70.5 

99 Wall Pushups refri-gerator chair tv cell phone remote 

Score: 80.7 75.2 67.5 65.1 62.9 
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ard deviation values that indicates the impact of our DDCN in 

andling the temporal scale variance. For example, when the stan- 

ard deviation for action classes are 37.3 and 43.1, DDCN achieves 

ccuracy improvements of 7.8% and 6.4%, respectively. 

. Conclusions 

We proposed a new pipeline to perform early action detec- 

ion in untrimmed videos. Our pipeline contains two new tech- 

ical components: (1) a Dynamic Dilated Convolutional Network 

DDCN) to better handle the temporal scale variance, and (2) a 

emantic Referencing Module (SRM) to reduce ambiguity in dif- 

erentiating similar-looking actions. Our proposed pipeline outper- 

orms state-of-the-art algorithms on two widely used untrimmed 

keleton-based action datasets, PKU-MMD and OAD. 

The main strengths of our work are: (1) our DDCN can de- 

ect actions on the videos with various temporal scales in an end- 

o-end and data-driven manner. Unlike most existing approaches 

hat need a separate stage to handle temporal scale variance, our 

esign improves the robustness and efficiency of the detection. 

2) Our SRM effectively encodes semantic information about the 

cene, which cannot be captured using current skeleton-based ap- 

roaches. This helps reduce ambiguity in early action detection. 

oth DDCN and SRM can be used as general modules in various 

ecognition pipelines to deal with temporal scale variance and se- 

antics enhancement. 

Limitations and Future Work. Firstly, the SRM module relies 

n effective object detection in image frames. Detection errors 

aused by occlusion and noise could affect semantics inference. 

hile the object detection confidence score was introduced in 

RM to reduce its sensitivity against detection error, non-standard 

r incomplete objects in some frames can still cause detection fail- 

re and perturb the accuracy. Adopting some video-based object 

etection techniques could utilize temporal information from the 

ideo to reduce jettison. Secondly, while we believe our designs 

re general, our current pipeline was only tested on datasets that 

ome with skeleton information. In the near future, we will ex- 

lore the generalization of our pipeline to more general datasets 

uch as ANET and THUMOS’14. 
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