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This paper proposes a new pipeline to perform early action detection from skeleton-based untrimmed
videos. Our pipeline includes two new technical components. The first is a new Dynamic Dilated Convo-
lutional Network (DDCN), which supports dynamic temporal sampling and makes feature learning more
robust against temporal scale variance in action sequences. The second is a new semantic referencing
module, which uses identified objects in the scene and their co-existence relationship with actions to
adjust the probabilities of inferred actions. Such semantic guidance can help distinguish many ambigu-
ous actions, which is a core challenge in the early detection of incomplete actions. Our pipeline achieves
state-of-the-art performance in early action detection in two widely used skeleton-based untrimmed
video benchmarks. The source codes are available at: https://github.com/Powercoder64/DDCN_SRM.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

Early action detection is to identify an action before the ac-
tion is completed. It has many applications in smart surveillance
systems, robotics, and autonomous driving [1]. In practical ac-
tion detection tasks, the detection needs to run on a streaming,
untrimmed video to identify both the action type and its start-
ing/ending frames. Such a detection is challenging, as different ac-
tions may have different paces and lengths, and different actions
could have similar beginning motions, making reliable prediction
difficult. Because of these issues, standard action recognition tech-
niques, which run on complete, trimmed video clips, often do not
apply effectively here.

Temporal Scale Variance. In different videos, similar or the
same actions can have different lengths, as different people may
perform actions (or different portions of action) at different paces.
Such a property of actions, so-called “temporal scale variance”, has
been shown to hamper the accuracy of many action detection sys-
tems [2]. An example is shown in Fig. 1. When conventional action
detection networks use static temporal windows to process a cer-
tain number of frames and detect actions, a long action such as
the “triple jump” only gets partially sampled, and not all the key
poses in the key stages of the run, hop, step, and jump will be ob-
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served. And furthermore, if the pace of the video changes, the pre-
determined sampling of frames is often not optimal. Consequently,
this action is often identified as a “sprint” or “long jump” action.

One way to tackle long videos with temporal scale variance
is to capture the most representative frames, or keyframes, from
videos. However, existing key frame extraction approaches need
a separate module to detect keyframes. Training such a module
is non-trivial [3], and often rely on a large amount of expensive
manually labeled data. Some recent methods propose to develop
self-supervised keyframe detection such as Self-attentive networks
[4] or Collaborative Learning [5] to circumvent expensive manual
labeling. But these methods still have two limitations: (1) they are
computationally inefficient, and (2) they capture features from indi-
vidual key-frames ignoring the temporal dependencies among them.
First, having a computationally efficient system is critical since the
prediction is expected to be made as early as possible and before
the action is completed. Second, modeling temporal dependencies
is important in action analysis [6] as actions are about the changes
in a person’s movements in the temporal dimension.

Another strategy to handle temporal scale variance is through
using Temporal Dilated Convolutional Networks (TDCN) [7]. The
main idea of TDCN is to use a hierarchical temporal structure.
Different time intervals, as sub-parts of the hierarchy, are as-
signed to different convolutional layers. With different layers of
the TDCN network extracting features using different temporal in-
tervals, TDCN can better detect incomplete sequences with miss-
ing frames. Recent TDCN design often adopts an exponential di-
lated structure, and this allows it to capture long-term temporal de-
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Fig. 2. Static temporal sampling: different sampled frames will be extracted from similar action sequences with different paces. Dynamic temporal sampling: frames are

more consistently sampled according to the paces.

pendencies. It also shares weights between different convolutional
layers, and this makes it efficient in processing long untrimmed
temporal sequences [8]. TDCN has been used to achieve state-of-
the-art performance in handwriting recognition [9], sign language
recognition [8], and action recognition [10]. However, most exist-
ing TDCN adopts a (static) temporal sampling, where the intervals
are pre-designed in a heuristic manner, based on important frames
of actions following standard paces. Consequently, when the given
action has a different pace, existing TDCN could fail to recognize
them correctly.

We propose a new Dynamic Dilated Convolutional Network
(DDCN) to tackle the temporal scale variance in untrimmed ac-
tions. Specifically, we enhance the TDCN with a new dynamic
temporal sampling scheme. Without needing to perform an extra
keyframe extraction, the DDCN is an end-to-end network without
bringing in much latency during online prediction when processing
long untrimmed videos.

Through training, DDCN aims to find the optimal temporal sam-
pling distribution and store them in a set of channels, so that ac-
tions with temporal scale variance (e.g., different paces, framer-
ates) can be better modeled. Fig. 2 illustrates the differences be-
tween the static and dynamic temporal sampling in dealing with
videos with temporal scale variance. When using the static tem-
poral sampling, from two similar actions with different paces, we
get quite different sampled frames (in green). Consequently, build-
ing a stable and robust action feature becomes harder. On the
other hand, when utilizing our dynamic temporal sampling, a more
adaptive sampling on frames (in red) can be obtained. Such a bet-
ter temporal sampling makes the robust feature modeling of action
under temporal scale variance noticeably easier.

We redesigned the standard DCN'’s hierarchical dilated structure
to make it more effective in dealing with temporal scale variance.
Our new design includes our novel dynamic temporal sampling,
dynamic dilated layer aggregation algorithm, and a new loss func-
tion to accommodate the dynamic temporal updates in our DDCN.

Semantic Ambiguity from Similar Motions. Many actions have
intrinsically similar motions. Some examples can be seen in Fig. 3,
where “opening a cabinet” (row-1), “opening a fridge” (row-2), and
“opening a microwave” (row-3) all involve similar motions. These
similar motions are hard to differentiate in current action recogni-
tion or detection systems, especially if an early prediction on in-
complete actions is needed. Our observation is that relevant ob-
jects in the scene, or we call semantic references, can provide use-
ful information to help tackle such ambiguity. For example, here
by using semantic references, “cabinet”, “fridge”, and “microwave”,
these similar motions can be distinguished.

Existing action detection/recognition strategies have not ef-
fectively modeled and used semantic references. Current strate-
gies can be classified into two main categories: skeleton-based
and image-based methods. (1) The skeleton-based methods pre-
dict actions using skeleton joints. Hence, semantic references from
background contents are not considered. (2) The image-based ap-
proaches use 2D convolutions to encode action-related informa-
tion in the images. Certain background information may be en-
coded into action features, but they are still insufficient to effec-
tively model semantic reference information. This is because they
are not designed to explicitly model semantic relevance between
reference objects and actions; consequently, they often include a
lot of semantically irrelevant background information, which actu-
ally reduces the expressive power of the action features [4].
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Fig. 3. An example of ambiguity in detecting similar-looking actions: “opening a cabinet” (above row), “opening a fridge” (middle row), and “opening a microwave” (bottom
row). The actions movements look similar without the corresponding semantic references, “cabinet”, “fridge”, and “microwave”.

In this work, we propose to develop a new “Semantic Refer-
encing Module” (SRM) to learn and utilize semantic reference in-
formation to help reduce ambiguity from similar-looking incom-
plete actions. Unlike most traditional image-based strategies, our
method can better detect/select action-relevant semantic informa-
tion in images and discard irrelevant information. This can signifi-
cantly increase early action detection accuracy.

Our SRM includes several components to capture the correla-
tions between semantics and actions. We first capture an initial
set of informative features from action videos and then use a rec-
ommendation system (i.e., Implicit Matrix Factorization (IMF) al-
gorithm) to discard less important features. We redesign the IMF
algorithm, commonly used for recommendation tasks in online
stores, and integrate it into our SRM to be effective for early action
detection. Finally, we convert the recommendation system output
to action detection scores.

The main contributions of this paper are:

(1) We propose a novel Dynamic Dilated Convolutional Network
(DDCN) to handle the temporal scale variance in incomplete ac-
tions from untrimmed videos.

(2) We design a new Semantic Reference Module (SRM) to suggest
relevant semantic objects to distinguish similar-looking actions.

(3) We conducted thorough experiments on untrimmed action
benchmarks, PKU-MMD and OAD. Combining the above two
new designs, our proposed pipeline outperforms the state-of-
the-art early action detection systems.

2. Previous work

This section discusses the existing strategies related to our work
and the challenges we aim to overcome. First, we explain the
online action detection work, followed by early action detection.
Then we discuss the previous strategies proposed to handle the
two main challenges in action detection and early action detection,
which are “Temporal Scale Variance” and “Semantic Ambiguity”.

Online Action Detection. Online action detection aims to iden-
tify actions in untrimmed videos in real-time. Online action de-
tection is often performed on long videos that introduces new
challenges. To handle these challenges, researchers proposed dif-
ferent strategies. For example, [11] used unidirectional and bidi-
rectional LSTMs to deal with short sequences in online early action
detection and long sequences in offline action detection. [12] sug-

gested a Knowledge distillation strategy that transfers the knowl-
edge from a teacher in offline shorter clips to online longer stu-
dent clips [13]. proposed a method based on Recurrent Neural Net-
work (RNN) namely temporally smoothing network to smooth per-
frame of long videos. [14] introduced an online temporal classifi-
cation model, that jointly with an action inference graph can de-
tect human action from long videos more efficiently. [15] modeled
human appearance based on the regions associated with human
skeleton joints and evaluated the temporal consistency of human
poses in different frames in real-time. [16] suggested two novel
modules, Temporal Label Aggregation and Dense Probabilistic Lo-
calization (DPL) to handle the uncertain action annotations, which
is a common issue in annotating long videos.

Early Action Detection. Early action detection aims to identify
incomplete actions in streaming video sequences. Several strategies
have been suggested to deal with incomplete actions.

One strategy is modeling temporal information hierarchically.
Hierarchical information can be levels of movement [17], hierarchi-
cal correlations between partial sequences and corresponding tem-
poral segments [18], and hierarchical temporal correlations among
various action classes [19]. These algorithms however are compu-
tationally expensive and mostly require a separate step to extract
temporal hierarchical correlations in actions. A more efficient algo-
rithm to capture temporal information online is desirable. Another
strategy to enhance the detection of incomplete actions studies is
using information captured from full videos. To achieve this, sev-
eral algorithms have been proposed such as deep sequential con-
text network (DeepSCN) [20] and teacher-student learning scheme
[21]. While using information from full videos can be beneficial for
early action detection, besides its computational complexity issue,
it often does not handle long ambiguous actions, as an example
given in Fig. 2.

Temporal Scale Variance in Action Segmentation. Tempo-
rally localizing the action in untrimmed videos is referred to
as action segmentation. A major challenging issue towards re-
liable action segmentation is handling temporal scale variance.
[22] padded the videos to a fixed size and utilized an Autoen-
coder to segment actions in videos [2]. suggested a Deformable
Temporal Residual Module to learn multi-scale temporal informa-
tion through multi-scale pooling layers. [23] introduced a graph
convolutional network to convert the varied-size graphs to fixed-
size feature maps [24]. proposed to restrict the duration of actions
to reasonable lengths. These existing action segmentation meth-
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ods have some limitations, including (1) expensive computational
cost for real-time applications, (2) only capable to handle com-
plete action sequences, and (3) failing to handle significant tem-
poral scale variance. For early action prediction, we need an ef-
ficient pipeline that runs on incomplete sequences with temporal
scale variance.

Temporal Scale Variance in Action Detection. Performing both
action segmentation and classification in untrimmed videos is of-
ten referred to as action detection in literature.

Some action detection systems extract keyframes/keyposes from
untrimmed action videos and utilize them to perform classification
and tackle temporal scale variance. Self-attention networks were
adopted in some pipelines [25] to detect keyframes in untrimmed
action videos. While [4] only used a temporal attention network,
[25] utilized two spatial and temporal attention networks to de-
tect temporal keyframes and spatial key-pixels. The spatial fea-
tures are extracted using a Convolutional Neural Network (CNN),
and temporal features are computed using a Recurrent Neural Net-
work (RNN). [26] suggested an approach to detect early actions in
continuous untrimmed videos by selecting keyposes. To pick the
keyposes, each pose is matched with those template poses in the
datasets using the Dynamic Time Warping (DTW) algorithm; then
the Markov chain is exploited to classify the features extracted
from keyposes.

Semantic Ambiguity in Early Action Detection. The ambigu-
ity of similar-looking actions is a critical challenge in early action
detection. To resolve this issue, several solutions have been sug-
gested such as using action-specific intermediate features [27] and
remembering hard-to-predict actions [28]. While these algorithms
are effective in certain scenarios, they use only temporal informa-
tion to resolve the ambiguity in similar-looking actions. However,
many ambiguous actions can be only distinguishable by relevant
spatial semantic information. An example of such similar-looking
actions is shown in Fig. 3.

3. Methodology
3.1. Overview and terminologies

Our proposed pipeline consists of an offline (Fig. 4) and an on-
line (Fig. 5) phase.

Offline Phase. During the offline phase, the input of our
pipeline is video sequences Vp = {V¥ k=1,2,...,I} from the ac-
tion dataset. Our DDCN module takes as input the skeleton data,
which can be obtained from the action videos through pose es-
timation (using, e.g., OpenPose [29] in our work), and then ex-
tracts different combinations of dynamic sampling points to en-
hance the temporal samplings for effective classification of differ-
ent action classes ck € C, where C is the set of action classes. The
extracted sampling positions and weights are stored in multiple
channels. More details of this proposed dynamic sampling are dis-
cussed in Section 3.2. In the SRM module, first, we train an ob-
ject detector using a Semantic Reference Detector [30] (green box in
Fig. 4) to identify reference objects that co-exist with correspond-
ing actions in Vp. Next, we extract a list of offline semantic refer-
ence attributes XOff, which consists of occurrence frequency of ref-
erence objects (number of occurrence) p, movement (shift of refer-
ence objects) z, and object detection confidence c. From these at-
tributes X°ff we can calculate initial semantic correlation ratings
RCOT — ., between each pair of reference object m and action
class n. A recommendation system is then adopted to refine X€OT
to get the final offline semantic reference scores soff,

Online Phase. During the online phase, in the SRM module,
given an action video sequence V¥ = {v;,t =1,2,..., T}, we first
compute the online semantic reference attributes X°1 which con-
sists of similar items of XOff for each frame t e T. XO0 helps the
pipeline better predict the action in each time step 0 <t < T. Then,
from X°M and SOff, we compute the online semantic reference scores
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Fig. 5. Online phase: in this phase, we first use the “Semantic Reference Detector” to identify semantic references in the scene. Next, “Online Semantic Reference Processing”
extracts the set of semantic features which are compared to the previously calculated offline semantic reference scores to compute the “Online Semantic Reference Scores”.
These scores indicate the joint probability of detected semantic reference occurrence with different action classes. Simultaneously, our DDCN produces the “Action Detection
Scores” by processing online skeleton sequences and trained dynamic sampling. Finally, we use a “Score Weighting” strategy to compute the “Final Class Score” based on the

two described scores.

SON for each action class. SO0 indicates the correlation scores of
online detected objects with respect to each action class. Concur-
rently, in the DDCN module, given the action skeleton sequence
Yk ={y,,t=1,2,...,T} whose joints are computed from V¥, the
DDCN uses the dynamic samplings learned in the offline stage to
calculate the final action detection scores A%T,

The final action detection scores F is the weighted summation
of the two aforementioned scores. In the following, we will elabo-
rate on the two main components of this pipeline.

3.2. Dynamic dilated convolutional network (DDCN)

A Temporal Dilated Convolutional Network, often abbreviated as
Dilated Convolutional Network (DCN), has recently been developed
as a temporal deep-net structure and shown to outperform RNN
and Bi-LSTM [6] in processing action data [6] and some other
temporal sequences. Another benefit of using DCN is that it allows
us to build deeper networks of less computational cost to capture
long-range temporal dependencies and obtain better reliability on
small-size datasets [10]. By expanding the receptive field, the DCN
can capture long-term temporal dependencies effectively and in-
crease the performance and efficiency of dense prediction archi-
tectures [31].

A DCN is a stack of dilated convolutions whose kernel elements
expand consecutively. A DCN utilizes temporal sliding windows on
temporal sequences to capture temporal information. The sliding
windows are defined within the fixed temporal lengths and are a
collection of temporal samplings whose inputs are consecutive time
frames. In a DCN, the temporal windows follow fixed structures
and are stacked as a power of 2 of dilated steps d® (i.e., 1, 2, 4, 8,
...). Consecutive temporal samplings from different sliding windows
are assigned to different convolutional layers.

In a conventional DCN, the convolutions are applied over two
time steps, t and t — s. Thus the kernel weights can be represented
as W = (WD wW®@j}, Therefore, we can define the dilated convolu-
tion [10] for layer [ at time step t as

g = fwDg-l L w@g1 4 by, (1)

where q{ is the dilated convolution result on time t in layer [, s
is the dilation rate increasing as the power of two in consecutive
layers, and b is the bias vector. The output of the network Q; at
time t is the concatenated tensor of all the dilated output layers as
Q=Ilg.q " ... 0L

To compute the feature maps, the convolutional operator is usu-
ally applied to the neighboring temporal points. So, to extract con-
volutional feature maps effectively, specifying appropriate temporal
neighboring points is crucial. The effectiveness of the neighboring
temporal points, and consequently, feature maps, dictate the accu-
racy of a temporal network when modeling temporal sequences.
In a conventional DCN, the neighboring temporal points are de-
fined in static positions. However, such a static temporal structure
in DCN is not always effective as it may not accommodate the tem-
poral variance in action sequences well. When dealing with spa-
tial and temporal variance in images or videos, dynamic networks
[32] have been shown to be more effective than static networks.
Therefore we propose a new dynamic temporal sampling to make
the DCN adaptive to varying temporal information. Specifically, the
DDCN can more adaptively capture temporal neighboring points
according to the data.

In our DDCN, the output of each layer, for each time step t is
formulated in Eq. (2).

— - 1-1
G =fWVq 5 +Wq ' +Wq, ) +b) (2)

Compared with the static DCN in Eq. (1), the DDCN includes extra
parameters of Dynamic samplings {tf, [} that are represented with
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. . -1 .
their weight W(3)qu} . Here 7 and t; are dynamic layer offset and
dynamic time step offset, respectively. Specifically, ty is calculated as

tp = arg mAaxP(c"|Y",tf), (3)

where A ={0,1,...&} is the set of dilated integers (in our exper-
iments & = 8), ¢k e C is the action class, and Y* is the sequence of
input skeletons. Here

P(ck|Y¥, tf) = arg mCinLossA, (4)

where Loss, is the loss function of action detection.

To ensure that the above equations are met, we train the DDCN
to find the optimum t; € A so that the following P(c¥|Yk tf) is
maximized:

P(KY¥, tf) = softmax(fF(WA «Y* + W/ xtp)). (5)

Here f is the activation function from the final layer, WA is the ker-
nel weights for the input skeleton data, and W/ is the 1D dilated
kernel weights.

The dynamic layer offset, I; is automatically updated based on
ty since, in a dilated network, different time steps are by default
assigned to different layers. The dynamic samplings can be per-
formed at any time steps to adaptively capture temporal informa-
tion. Specifically, the dynamic time step offset ty € A enumerates
in a 1D integer space Z and is updated to minimize Loss, dur-
ing the training. So, the new dynamically sampled point can relo-
cate to ¢ —t; where more effective temporal features with respect
to the previous temporal neighboring sampled points can be ob-
tained. The output of the network at time t concatenates the out-
puts of all the layers.

Temporal Scale Variance. Unlike the conventional DCN that fol-
lows a static sampling structure (static temporal sliding windows),
our DDCN can dynamically relocate temporal sampling structures
to better accommodate temporal scale variance. An example for
an action “writing” with two different paces is shown in Fig. 6.
In this example, when using static temporal sampling, the sam-
pled frames are different for the two similar actions with different
paces. Such inconsistent sampling results in bigger intra-class vari-
ation, and, consequently, reduces the action detection accuracy. In

contrast, our dynamic temporal sampling adjusts the sampling lo-
cations on these actions. As a result, it decreases the intra-class
variation and enhances the action detection accuracy.

Identification of Similar Motions. In our pipeline, reference
objects detected in the Semantic Referencing Module (SRM) help
reduces the ambiguity in the detection of similar motions. But here
the DDCN also helps alleviate this action ambiguity. This is be-
cause, during the training phase, DDCN selects the most distinctive
temporal sampling patterns to differentiate actions in the dataset.
An example that shows this between conventional DCN and DDCN
is given in Fig. 7. With the static temporal sampling (green arrows),
two different incomplete actions, “tearing up paper” and “reading”
are similar throughout half of the video clips. In contrast, with
DDCN, a more effective sampling (red arrows) helps distinguish
them in the early stage of the actions.

3.3. Semantic referencing module (SRM)

Our proposed SRM contains an offline and an online phase.

3.3.1. Offline phase

Semantic Reference Attributes. The aim of the offline phase
(Fig. 4) is to create the offline semantic correlation scores soff goff
is a M x N table storing the probability of correlation between the
M reference objects and N action classes. sOff s used in the online
stage to calculate the action class score SO1,

To this end, first, we train a trained reference object detector
network [30]. This network calculates the offline semantic refer-
ence attributes X°ff = {x 'm,n,i=1,2,...,M,N,I} where xi,, is
the reference object attribute m in action sample i of class n, and
M, N, and I are the number of detected reference objects, num-
ber of action classes, and number of action samples in the action
dataset respectively. We adopted [30] to perform reference object
detection as it was reported to achieve the highest object detection
accuracy (leader-board, Oct. 2020) on ImageNet [33], a widely used
semantic objects dataset. Each xi,, = {pi,,. Zbn. Cine ), and piy,, Zi,
and ci,, are occurrence frequency, movement and detection score
of reference object m in action sample i of class n.
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Recommended Semantic References. To rank the semantic ref-
erences for different classes, we design a recommendation scheme
based on the implicit matrix factorization algorithm [34]. This
scheme is inspired by the common recommendation systems
which suggest items to users by considering users’ ratings through
user-items interactions. In our scenario, we develop this recom-
mendation system by replacing users with action classes and items
with reference objects. First, we calculate the initial semantic cor-
relation ratings of each semantic reference m in each sample i
of action class n, X' = {ri . .m,n,i=1,2,...,M,N,I}, where each
rin is obtained by
rzlnn = C;nn ' (p:'nn +Z:nn) (6)

We calculate X€OT based on three terms. First, the importance
of a reference object in an action class is related to the number of
occurrences pi.,. Second, in many action classes, informative refer-
ence objects are often those that are dynamic or moved with the
actions. Some examples can be found in Section 4.2.2. For exam-
ple, objects with the most significant movement/shift in the action
classes “baseball pitch”, “biking”, and “tennis swing” (selected from
the UCF101 dataset [35]) are “baseball bat”, “bicycle” and “tennis
racket” respectively. Therefore, we define the object movement zi,,
as the second term in X€OT, Third, we also consider (here by mul-
tiplying) the detection confidence score 0 < ci,, <1 to adjust the
correlation.

The input of the recommendation scheme is the initial seman-
tic correlation ratings X€OT; its output is the offline semantic ref-
erence scores SOff = {smn.m=1,2,....M,n=1,2,...,N}.

We choose the Implicit Matrix Factorization (IMF) recommen-
dation system [34] to calculate semantic reference scores for dif-
ferent action classes. We observed that IMF is more effective than
other collaborative-based recommendation systems such as Neural
Collaborative Filtering (NCF) [36] in recommending semantic refer-
ences for action detection (please see Section 4.2 for more details).

3.3.2. Online phase

In the online phase, first, the reference objects attributes (XO0)
are detected using the same network [30] applied in the offline
phase. Given soff and the Xon, for each current action frame, we
calculate the online semantic reference scores

19
SN = Z Zsmn? (7)
Om:O

where O is the online detected reference object, M’ is the number
of online detected reference objects, Z is a normalizing factor, spp
is derived form SOff. SO is a 1 x N vector indicating the proba-
bilities of action frame related to different action classes 0 <n <N
based on semantic references.

Simultaneously, DDCN calculates the action detection score AT,
a 1 x N vector indicating the probabilities of action frame related
to different action classes 0 < n < N. The final detection score for
the action class n is then calculated by

Fo=Wg - S + W, - A, (8)

where Wy and W, are scalar weighting factors for the online se-
mantic correlation and initial action detection scores.

3.4. Implementation details

Here, we summarize the implementation details of our pro-
posed algorithm:

In our experiments, missing joints (due to occlusion or pose es-
timation errors) are set to zero.

All of our experiments are conducted using a Linux PC (Ubuntu
18.04) with an NVIDIA GTX 1070 graphic card, Intel Xeon 24-core
processor, and 32 GB of RAM. Our deep learning networks are im-
plemented using Pytorch.
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video clip | | |

|
| |

observation ratio = 100%
| | |

observation ratio = 90%

| |
i

observation ratio = 50%

|

|

g

Fig. 8. An example of different observation ratios (100%, 90%, and 50%) on an untrimmed video clip used in our experiments. In this example, the untrimmed video clip
includes three continuous actions:“walking”, “reading”, and “writing”. The observation ratios are calculated based on the amount of observed part at the beginning of the
actions, where the end of actions are cut..

4. Experimental results Table 1

Parameters used in our pipeline.

4.1. Comparative results

Parameter Value Section

We compared our algorithm with the state-of-the-art ap- Number of dilated integers (§) 8 32
. . Temporal receptive field for DDCN 1024 3.2
proaches. Our experiments are conducted on untrimmed Dilated rate (s) 5 32
continuous-streaming video clips. To test the prediction on an Number of dilated steps (d) 6 32
incomplete action, we cut the ending portion of an action video Number of dilated layers in DDCN 10 3.2
to mimic different Observation Ratio (OR). For example, 90% OR 'L“Uf“'?ef °Rf channels in DDCN ?275 ;;
means the first 90 percent of the video sequence is available. We N?;‘E:rgofastielemnjoims 0 2; o
illustrated the above in Fig. 8, where three different observation Weight Decay 1e-6 32
ratios of 100%, 90%, and 50% are shown for an untrimmed video Maximum number of subjects for OAD and PKU-MMD 1 and 2 3.2
clip consisting of three continuous actions of “walking”, “reading”, Maximum number of reference objects per frame 10 3.3
and “writing". Total number of reference objects (M) 200 33
I . ts. we used the F1 score metric based on Number of classes for (N) for OAD and PKU-MMD 10 and 52 3.3

Il our experiments, Final detection score weights ratio (W,/Wg) 5.7 3.2.2

frame-level prediction. We evaluated the prediction results based
on each frame to accommodate different observation ratios in
untrimmed videos. The frame-level F1 score, following [1], is for-
mulated as

p(@) xr(6)
2 @)+ ® ®

where p, and r are precision and recall, which are for frame-level
predictions in our experiments, and 6 is the frame-level action de-

F1(0) =

Table 2

Comparison of the proposed early action detection pipeline with
existing methods on the OAD dataset under different observation
ratios. The numbers with * are obtained by running the provided
source codes, and the numbers without * are from the original
papers, and the values are listed as “-” when unavailable or ir-
relevant.

. . Method |/ OR 10% 50% 90% 100%
tection threshold. For the OAD dataset, using the frame-level pre- f
diction is a standard metric. For the PKU-MMD dataset, however, [43] - - - 63.0%
rather than its original action-level metric using the F1 score, we [41] - - - 67.0%"
& 1-leve g ' (39] 60.0% 753% 77.5%  82.6%*
adopted the frame-level metric using the F1 score. To evaluate the [40] 50.0% 75.8% 78.3% 82.9% *
action prediction accuracy before the actions are completed, such a [37] 62.0% 773% 78.8% 83.0%*
frame-level prediction metric is more suitable. We revised and ran [6] 72.0%  81.2%  83.7% 85.8%*
the source codes of some representative full-sequence-based ap- {:é} 65.5% 73.0%  81.5% gg'gﬁy )
proaches and estimated the frame-level prediction accuracy under (47] B B _ 88:”;:

various observation ratios.

The experiments were conducted on two widely used datasets
of continuous untrimmed actions videos, OAD [37], and PKU-MMD
[38] datasets.

(1) OAD dataset [37] includes 59 long videos of continuous
action sequences of 10 action classes. Skeletal joints are also
provided together with the videos. The first 39 long videos are
used for training, and the last 20 videos are used for testing.
We compared our method with [37,39] (ECCV16), [40] (CVPR17),

DDCN+SRM (ours) 80.2% 86.1%  89.2%  89.6%

Table 3

Comparison of the proposed early action detection pipeline with
existing methods on the PKU-MMD dataset under different ob-
servation ratios. The numbers with * are obtained by running the
provided source codes, and the numbers without * are from the
original papers, and the values are listed as “~” when unavailable
or irrelevant.

[41] (WACV17), [42] (WACV19), [43] (ICASSP17), [44] (TCSVT18), Method / OR 10% 50% 90% 100%

[6] (TPAMI19), [45] (TBCS2021), [46] (DT2021), and [47] (ICPR21). [39] 9% 630% 7454  76.0% -
The experimental results for the OAD dataset are illustrated in [37] 253%  64.0%  734%  759%*
Table 2. As shown in this table, our proposed DDCN + SRM outper- [40] 19.8%  62.9%  749%  77.1%*
forms the state-of-the-art methods on the accuracy of early action {g} - - - g:~i§:
detection. Esp.eaa.lly‘ when the observation ratio is low (i.e., 10%), (6] 139%  741%  82.9% 85:2£ .
DDCN + SRM is 51gn1ﬁcantly better than the others. [42] 26.3% 68.3% 80.1% 85.9% *

(2) PKU-MMD dataset [38] consists of 1076 long videos from 51
action categories, among which we used the cross-subject scenario

DDCN+SRM (ours) 39.2%  80.7% 87.1%  88.0%
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Comparison of the Dynamic DCN and a conventional DCN using SRM and different recommendation systems (NCF and
IMF) on the OAD dataset under different Observation Ratios (ORs). In this table, the DCN and DDCN encode the pose
features while SRM-NCF and SRM-IMF capture object contexts.

Modules/OR 10% 20% 30% 40% 50% 90% 100%
DCN 68.5% 70.7% 73.8% 74.8% 75.9% 80.3% 81.1%
DDCN 71.8% 73.5% 76.0% 77.9% 79.0% 83.4% 85.3%
SRM-NCF 60.1% 60.9% 62.0% 63.2% 64.7% 68.1% 72.0%
SRM-IMF 64.3% 65.0% 67.1% 67.9% 69.0% 73.3% 77.1%
DCN + SRM-NCF 68.6% 68.8% 71.0% 74.2% 76.1% 80.6% 81.6%
DCN + SRM-IMF 71.3% 73.0% 76.4% 79.4% 80.0% 84.7% 85.2%
DDCN + SRM-NCF 72.0% 74.0% 76.3% 78.5% 79.3% 83.8% 85.7%
DDCN + SRM-IMF 80.2% 81.2% 83.9% 84.6% 86.1% 89.2% 89.6%

Table 5

Comparison of the Dynamic DCN and a conventional DCN using SRM and different recommendation systems (NCF and
IMF) on the PKU-MMD dataset under different Observation Ratios (ORs). In this table, the DCN and DDCN encode the
pose features while SRM-NCF and SRM-IMF capture object contexts.

Modules/OR 10% 20% 30% 40% 50% 90% 100%
DCN 30.8% 48.6% 55.0% 66.5% 73.9% 80.0% 81.6%
DDCN 34.1% 51.9% 57.7% 70.4% 76.0% 83.3% 84.1%
SRM-NCF 22.4% 34.0% 44.8% 51.2% 59.3% 68.0% 69.9%
SRM-IMF 25.9% 36.3% 51.9% 58.9% 62.6% 73.7% 75.6%
DCN + SRM-NCF 30.9% 39.0% 58.3% 66.0% 73.9% 80.1% 81.7%
DCN + SRM-IMF 35.0% 47.1% 63.3% 70.2% 77.8% 83.9% 85.6%
DDCN + SRM-NCF 34.1% 45.0% 63.1% 69.7% 76.1% 83.5% 84.4%
DDCN + SRM-IMF 39.2% 52.4% 60.0% 74.2% 80.7% 87.1% 88.0%
with 946 and 130 videos for training and testing data, respectively. 10% g
We compared our method with [37,39] (ECCV16), [40] (CVPR17), % o @
[48] (TIP18), [6] (TPAMIN9), [42] (WACV19), [49] (EITCV20), €8% ® T E @
[50] (ICPR21), [51] (IJARS21), [52] (ICMM), and [53] (CVPR22). The E % = 2 9 2 &
results are shown in Table 3. DDCN + SRM also outperforms exist- 3 6% O " T = B
ing methods. g 5% © % 8 3
z 4% S 3 O o
. S 3% e %
4.2. Ablation study 3 % 4
Q 2% —
< o
We conducted several ablation studies on (1) different compo- L I I
. 0%
nents of the proposed approach, (2) SRM for semantic references,
431 37.3 21.5 15 124 11.7 98 87 86 58

(3) DDCN on temporal scale variance, and (4) weight weights in
the loss function.

4.2.1. Analysis on different components

In Table 4 and Table 5, we illustrate the network performance
when using dynamic sampling and using different recommenda-
tion systems for OAD and PKU-MMD datasets, respectively. These
results show that with dynamic samplings, DDCN improves the
performance of the conventional DCN in early action prediction.
The Implicit Matrix Factorization (IMF) algorithm [34] is more ef-
fective than other collaborative-based methods, such as Neural Col-
laborative Filtering (NCF) [36] in sorting semantic references.

The traditional DCN and our DDCN are used to extract human
skeleton pose information. Meanwhile, the SRM module, with IMF
and NCF recommendation systems, are used to capture object con-
texts (semantics). The experimental results indicate that (1) using
pose information (DDCN) alone contributes more to the perfor-
mance gain, than using object contexts (SRM) alone; and (2) the
combination of DDCN and SRM-IMF leads to the best overall per-
formance.

4.2.2. Semantic references

Table 6 illustrates the normalized covariance matrix of the cor-
relations between the semantic reference objects and actions. The
semantic reference O, for action class a, is rated based on the

Standard deviation

Fig. 9. DDCN'’s performance gain (y-axis) under different temporal scales. Here the
temporal scale variance is described using the standard division (x-axis) of the
video lengths (frame #) of each action class in the OAD dataset.

sum of the recommended probability of semantic reference object
occurring in action class sample i of class n:

1 1
D Shn=)_ P(Omlay),
i=0

i=0

(10)

Where [ is the number of samples in class n. In our experiments,
for the OAD dataset (where actions are captured in a controlled
environment), we have detected total of 29 semantic reference ob-
jects for 10 action classes.

As can be seen in Table 6, action classes are often correlated
with unique combinations of semantic references. These combina-
tions help distinguish different action classes. Many of these se-
mantic references are logically connected to corresponding actions.
For example, the action “wiping” in the kitchen in this dataset
turns out to be highly correlated with “microwave”; “Eating” and
“bowl” are highly correlated.

We also tested the recommendation system on the UCF101
dataset [35], a widely used action videos dataset that includes a
great variety of semantic objects. To train the recommendation sys-
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Covariance matrix of the correlations between the actions (A) and semantic reference objects (O) in the OAD dataset.
The action labels are abbreviated as: Drinking (Dr), Eating (Ea), Writing (WR), Opening Cupboard (Cu), Opening Mi-
crowave (Mi), Washing (Wa), Sweeping (Sw), Gargling (Ga), Throwing Trash (Tr), and Wiping (Wi).

microw
sink
chair
plant
table

0.11
0.35
0.11

mouse 0.19
vase
cup
remote
bowl
phone
knife
ball

toilet

0.37
suitcase
handbag
backpack
tv

bird
bottle
book

0.03 0.07
0.2

laptop
tie
clock
glass
spoon n
bat
skboard

drier

0

0.29 0.27 0.18 0.21

0.25 0.11

0.34 0.11

0

0.19 0.19

12

26 0.21

0.35

0.18

0.35
0.14

0.26 0.23

0.1
0
0.28

0.01

0.06 0.38

0 0.28 0.23

0.26

tem model, we utilized all the videos in the dataset with a sam-
pling rate of 5 frames per action clip. So, totally we created 63,689
semantic reference rating samples including 101 action classes and
79 semantic references. We show some of the recommended se-
mantic reference objects for some classes in Table 7. Each row
shows the “Score” values without normalization. From this table,
we can see a strong correlation between top-rated semantic ref-
erence objects and corresponding action classes. For example, top-
rated semantic reference objects for action class 11, “Biking”, are
“bicycle”, “car”, “chair”, “motorcycle”, “parking meter”, and “traffic
light”, which are most commonly seen on the road.

10

4.2.3. Temporal scale variance

Fig. 9 illustrates the correlation between temporal scale vari-
ance and accuracy improvement achieved by the DDCN compared
to a conventional DCN. Here, the standard deviation values are ob-
tained from the set of video length values of the sample points on
each action class. In this example, the standard deviation values
show the temporal scale variance in action samples of 10 action
classes from the OAD dataset. A higher standard deviation value
indicates a higher variation in the number of frames (or tempo-
ral scale variance) for an action class. As shown in Fig. 9, there is
a strong correlation between accuracy improvement and the stan-
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Table 7

Top recommend semantic references for some example classes of UCF101 dataset.
class #  class name top 1 top 2 top 3 top 4 top 5
4 Baby-Crawling dog chair tv sports ball remote
Score: 104.5 92.9 82.1 74.9 70.7
7 Baseball Pitch baseball bat dog car baseball glove  horse
Score: 130.4 106.3 94.4 86.4 84.4
11 Biking bicycle car chair motor-cycle parking meter
Score: 128.9 109.0 98.0 80.9 76.1
20 Brushing Teeth  tooth-brush chair tie handbag dog
Score: 107.4 99.8 90.9 84.5 80.6
49 Kayaking boat car surf-board cow baseball bat
Score: 117.7 107.4 98.0 80.8 76.1
81 Skiing skis skate-board snow-board bird dog
Score: 110.8 99.6 95.6 79.3 75.8
92 Tennis Swing tennis racket  sports ball car potted plant baseball bat
Score: 1234 111.0 90.7 90.2 75.0
95 Typing keyboard laptop cup tv book
Score: 102.9 84.6 80.9 73.5 70.5
99 Wall Pushups refri-gerator chair tv cell phone remote
Score: 80.7 75.2 67.5 65.1 62.9

dard deviation values that indicates the impact of our DDCN in
handling the temporal scale variance. For example, when the stan-
dard deviation for action classes are 37.3 and 43.1, DDCN achieves
accuracy improvements of 7.8% and 6.4%, respectively.

5. Conclusions

We proposed a new pipeline to perform early action detec-
tion in untrimmed videos. Our pipeline contains two new tech-
nical components: (1) a Dynamic Dilated Convolutional Network
(DDCN) to better handle the temporal scale variance, and (2) a
Semantic Referencing Module (SRM) to reduce ambiguity in dif-
ferentiating similar-looking actions. Our proposed pipeline outper-
forms state-of-the-art algorithms on two widely used untrimmed
skeleton-based action datasets, PKU-MMD and OAD.

The main strengths of our work are: (1) our DDCN can de-
tect actions on the videos with various temporal scales in an end-
to-end and data-driven manner. Unlike most existing approaches
that need a separate stage to handle temporal scale variance, our
design improves the robustness and efficiency of the detection.
(2) Our SRM effectively encodes semantic information about the
scene, which cannot be captured using current skeleton-based ap-
proaches. This helps reduce ambiguity in early action detection.
Both DDCN and SRM can be used as general modules in various
recognition pipelines to deal with temporal scale variance and se-
mantics enhancement.

Limitations and Future Work. Firstly, the SRM module relies
on effective object detection in image frames. Detection errors
caused by occlusion and noise could affect semantics inference.
While the object detection confidence score was introduced in
SRM to reduce its sensitivity against detection error, non-standard
or incomplete objects in some frames can still cause detection fail-
ure and perturb the accuracy. Adopting some video-based object
detection techniques could utilize temporal information from the
video to reduce jettison. Secondly, while we believe our designs
are general, our current pipeline was only tested on datasets that
come with skeleton information. In the near future, we will ex-
plore the generalization of our pipeline to more general datasets
such as ANET and THUMOS'14.
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