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• MLs were used for life cycle inventory, 
impact assessment and interpretation 
stages. 

• ML improved prediction accuracy, 
pattern discovery and computational 
efficiency for LCAs. 

• Continuous data collection and compi-
lation is needed to support more reliable 
ML for LCAs. 

• Robust ML modeling selection and un-
certainty evaluation are needed.  
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A B S T R A C T   

Life Cycle Assessment (LCA) is a foundational method for quantitative assessment of sustainability. Increasing 
data availability and rapid development of machine learning (ML) approaches offer new opportunities to 
advance LCA. Here, we review current progress and knowledge gaps in applying ML techniques to support LCA, 
and identify future research directions for LCAs to better harness the power of ML. This review analyzes forty 
studies reporting quantitative assessment with a combination of LCA and ML methods. We found that ML ap-
proaches have been used for generating life cycle inventories, computing characterization factors, estimating life 
cycle impacts, and supporting life cycle interpretation. Most of the reviewed studies employed a single ML 
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method, with artificial neural networks (ANNs) as the most frequently applied approach. Both supervised and 
unsupervised ML techniques were used in LCA studies. For studies using supervised ML, training datasets were 
derived from diverse sources, such as literature, lab experiments, existing databases, and model simulations. 
Over 70 % of these reviewed studies trained ML models with less than 1500 sample datasets. Although these 
reviewed studies showed that ML approaches help improve prediction accuracy, pattern discovery and 
computational efficiency, multiple areas deserve further research. First, continuous data collection and compi-
lation is needed to support more reliable ML and LCA modeling. Second, future studies should report sufficient 
details regarding the selection criteria for ML models and present model uncertainty analysis. Third, incorpo-
rating deep learning models into LCA holds promise to further improve life cycle inventory and impact assess-
ment. Finally, the complexity of current environmental challenges calls for interdisciplinary collaborative 
research to achieve deep integration of ML into LCA to support sustainable development.   

1. Introduction 

Life Cycle Assessment (LCA) is the foundational method for quanti-
tative sustainability assessment (Hellweg and Canals, 2014). LCA is a 
systematic assessment approach, capable of evaluating resource con-
sumption and environmental impacts of products, as well as processes 
and services over their entire lifespan. Due to their comprehensive 
scope, LCA studies have been successfully applied to support technology 
development, policy analyses and green business marketing. Notably, 
the comprehensiveness of LCA entails extensive data collection across 
the supply chain and advanced data analytics. Collating diversely 
sourced big datasets over all upstream processes (i.e. resource extrac-
tion, production, and transport) as well as downstream processes (i.e. 
product use and disposal), ensuring high quality of all relevant datasets, 
and conducting prudent analyses are essential for credible LCAs. 

Rapid developments in data generation, storage and analytics propel 
increasing interests in harnessing the power of big datasets (Cooper 
et al., 2013; Xu et al., 2015) and machine learning (ML) techniques to 
advance LCA (Romeiko et al., 2020a; Romeiko et al., 2020b; Xu et al., 
2015). ML, a subfield of artificial intelligence, is the study of computer 
algorithms that improve automatically through experience (Mitchell, 
1997). ML can decipher the complexity of datasets, enable prediction, 
and discover new knowledge and patterns hidden behind the datasets. 
ML methods are broadly categorized into supervised learning and un-
supervised learning. Supervised learning identifies patterns that relate 
variables to measured outcomes and maximizes accuracy when pre-
dicting those outcomes (James et al., 2013). For example, linear, tree- 
based, distance-based, nature-inspired, neural network, and deep 
learning models are frequently supervised learning approaches (Hou 
et al., 2020; Naseri et al., 2020; Romeiko et al., 2020b; Slapnik et al., 
2015a; Thilakarathna et al., 2020). Unsupervised learning exploits 
innate properties of the input datasets to detect trends and patterns 
without explicit designating the outcome of interest (Han et al., 2011). 
Unsupervised learning often includes clustering, association rules, and 
dimension reduction analyses (Abdella et al., 2020; Feng et al., 2019; 
Mao et al., 2019). Both learning approaches are widely and successfully 
applied in a variety of disciplines such as food (Saha and Manick-
avasagan, 2021), building (Fathi et al., 2020), climate (Rolnick et al., 
2022), and public health (Santos et al., 2019). 

Recent efforts have begun to explore utilizing ML to support LCA 
applications (Dick et al., 2015; Marvuglia et al., 2015b; Ramakrishnan 
et al., 2012; Slapnik et al., 2015b; Sousa et al., 2001; Sundaravaradan 
et al., 2011). For example, ML models have been used to predict missing 
life cycle inventory (Hou et al., 2020; Sundaravaradan et al., 2011), 
estimate the life cycle impacts of chemicals (Song et al., 2017), and assist 
in life cycle interpretation (Azari et al., 2016; Sharifa and Hammad, 
2019). There are a few recent reviews summarizing the application of 
ML in LCAs (Barros and Ruschel, 2020; Ghoroghi et al., 2022). Although 
these reviews are valuable and insightful, they focus on either a single 
sector such as building (Barros and Ruschel, 2020) or applications at 
multiple scales such as building or cities/communities (Ghoroghi et al., 
2022). An in-depth review of the current applications of ML in various 
LCA stages and associated merits and challenges is necessary. 

Additionally, a discussion of future research directions is needed to 
improve the integration of ML and LCA. 

To fill in this knowledge gap, this article reviews existing publica-
tions that reported applications of ML approaches to support LCA. 
Specifically, this study identifies the purposes of applying ML ap-
proaches for LCA, examines the types of ML approaches applied to 
support LCA, and analyzes data sources used for ML development. 
Furthermore, this article discusses the strengths and limitations of cur-
rent applications of ML in LCA, as well as future research directions for 
innovating LCA methods with ML approaches. 

2. Methods 

Guided by PRISMA (Preferred Reporting Items for Systematic Re-
views and Meta-Analyses (Liberati et al., 2009), we followed the seven 
steps outlined in Fig. 1 to identify relevant articles and conduct the re-
view. During Step 1, we identified original research articles published 
during years 2010–2020 by searching the “Web of Science” and “Science 
Direct” publication databases using different combinations of keywords, 
including “life cycle assessment”, “life cycle analysis” and “machine 
learning”. While the literature review requires a finite time frame, we 
recognize the potential limitation of excluding studies published after 
the review was complete in year 2021. For Step 2, we removed the re-
petitive studies from the previous step. In Step 3, we screened the arti-
cles based on their abstracts. If the abstract appeared to be irrelevant 
with either LCA or ML, we removed the articles from our review. Step 4 
further screened the full text of the remaining articles and removed the 
articles that did not explicitly mention both LCA and ML. In step 5, those 
studies that did not conduct quantitative analyses with ML and LCA were 
removed. In Step 6, to expand the search, we tracked the articles, which 
have cited the articles identified in Step 5 via Google Scholar. Finally 
(step 7), we thoroughly evaluated these studies from both LCA and ML 
perspectives. 

3. Results 

3.1. Articles identified following the PRISMA guideline 

Table 1 summarizes the identified publications under each combi-
nation of keywords and from different databases. With the keywords 
“life cycle assessment” and “machine learning”, the search yielded 26 
records from web of science and 203 records from science direct. Using 
the keywords “life cycle analysis” and “machine learning”, five records 
were found on web of science and 93 records on science direct. 
Combining the publications resulting from different keywords and da-
tabases, our initial search found 327 records. After removing duplicate 
records, 305 articles were identified. After screening the abstracts of 
those 305 articles, 173 articles were removed due to irrelevance to the 
joint use of ML and LCA. We further screened the full manuscripts of the 
remaining 132 articles, and identified that 37 articles explicitly reported 
the application of both LCA and ML. Those articles excluded from this 
study applied either LCA or ML alone, but neither of them. Among the 
final 37 articles, 8 studies only qualitatively discussed the LCA and ML, 
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and the remaining 29 studies performed quantitative analysis with LCA 
and ML models. Additionally, by tracking the citations of these 29 
studies, we included additional 11 articles, which also used quantitative 
LCA and ML models. As a result, 40 articles that conducted quantitative 
assessment with a combination of LCA and ML models were included in 
our final review and analysis (Tables S1 and S2). The Table S2 provides 
the details of the addressed knowledge gaps, applied LCA stages, ML 
model algorithms, ML model inputs, ML model outputs, data sources, 
ML validation procedures, model comparison, and study outcomes for 
each article. 

3.2. Trends in ML & LCA publications and application areas 

Most of the ML & LCA articles (27 out of 40) were published between 
2019 and 2020 (Fig. 2). Prior to 2018, less than 4 articles/year were 
found to feature the combination of LCA and ML. These articles were 
published in 22 journals across different disciplines. Among those 
journals, Journal of Cleaner Production and Science of Total Environ-
ment are two major hubs for publishing LCA articles that used ML ap-
proaches. These articles cover various disciplines such as agriculture, 
buildings, chemicals, energies and manufacturing processes (Fig. 2). 

Among these application areas, agriculture is the top focus area. 
Approximately 37 % of total articles discussed agricultural products or 
processes. Next, 20 % of total articles discussed buildings or building 
materials, and 15 % of total articles focused on chemical toxicity or 
green chemistry. Approximately 10 % of total articles analyzed the en-
ergy sector, and 7 % focused on manufacturing processes. 

Fig. 1. The review process and associated articles based on the PRISMA guideline.  

Table 1 
Number of articles found in the search databases.  

Search 
# 

Databases Query # of found 
articles 

# of 
duplicated 
articles  

1 
Web of 
Science 

“Life cycle assessment” 
and “machine learning”  

26  0  

2 
Web of 
Science 

“Life cycle analysis” 
and “machine learning”  

5  1  

3 Science 
Direct 

“Life cycle assessment” 
and “machine learning”  

203  16  

4 Science 
Direct 

“Life cycle analysis” 
and “machine learning”  

93  5  
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3.3. Addressed knowledge gaps by applying ML in LCA 

The majority of the studies (35 studies in group 1 out of total 40) 
framed ML models as regression applications to predict values for the 
LCAs (Table 2). The first three subgroups (subgroups 1.1, 1.2, and 1.3), 
containing 23 studies, used ML models to fill in key data gaps of life 
cycle inventory, characterization factors, and life cycle impact, respec-
tively. First, the life cycle inventory is lacking for emerging technologies 
and products due to unavailability of measurement datasets. Six studies 
utilized ML to fill in the data gaps in the life cycle inventories, as 
described in subgroup 1.1. Second, the characterization factors exist 
only for a small set of chemicals due to limited laboratory testing. 
Therefore, seven studies in subgroup 1.2 relied on ML to determine the 
missing characterization factors. Third, eight studies in subgroup 1.3 
focused on applying ML models to compute life cycle impacts crop 
production in regions (such as Iran), where agricultural LCAs were less 
studied. Overall, ML models were applied to estimate key datasets to 
enable life cycle inventory and impact assessment in the first three 
subgroups. 

ML models also were used to address method and application chal-
lenges of LCAs, as demonstrated in subgroups 1.4 through 1.7. First, LCA 
has been criticized as a spatially and temporally coarse approach, which 
limits its capability of supporting regional or time-sensitive decision 
making. To address this method challenge, two studies in subgroup 1.4 
used ML to improve the spatial resolutions and temporal dynamics of 
agricultural life cycle impacts. Second, to aid designers in estimating the 
environmental impacts of various design options, MLs were developed 
as simplified and rapid surrogate models, which are more user friendly 
than traditional LCA models for designers and other non-LCA experts. 
Seven studies in subgroup 1.5 generated ML models based upon life 
cycle impact datasets with the goal of providing rapid and accurate life 
cycle assessment approaches for non-LCA experts. Third, like other 
quantitative approaches, the uncertainty and sensitivity of LCA models 
have been hot subjects. To contribute to this area, three studies in sub-
group 1.6 applied MLs to quantify uncertainty of LCA models, and one 
additional study in the same subgroup assessed sensitivity of life cycle 
impacts. Finally, the subgroup 1.7, consisting of two studies, used ML to 
bridge LCA and optimization approaches, which eventually enabled 
determining the optimized product designs with the best product per-
formances and lowest environmental impacts and costs. 

Each of the remaining four groups include only one or two studies. 
(Marvuglia et al., 2015a) was the only study in group 2, whose aim was 
to reduce the input parameters for quantifying chemical characteriza-
tion factors. (Romeiko et al., 2020a) and (Zhao et al., 2019) in group 3 
used ML models for feature ranking in order to determine the relative 

importance of driving factors for agricultural life cycle impact estimates. 
Different from the aforementioned studies, (Abdella et al., 2020) in 
group 4 clustered the food sectors based on their sustainability perfor-
mances. Additionally, (Tao et al., 2018) in group 5 framed their research 
questions as classification problems, and estimated environment re-
leases from chemical use based upon the chemical classes. 

3.4. ML applications in various stages of life cycle assessment 

Based upon the relevant LCA stages for ML applications, this review 
categorized the total 40 studies into three groups (shown in Table 3). For 
the first group described in Section 3.4.1, ten studies focused on utilizing 
ML models in the life cycle inventory stage. For the second group 
described in Section 3.4.2, 22 studies applied ML in the life cycle impact 
assessment stage. For the last group described in Section 3.4.3, the 
remaining eight studies applied ML to support the life cycle interpre-
tation stage. 

3.4.1. ML for life cycle inventory 
Depending on the scope of life cycle inventory, the ten studies in the 

first group were classified into two subgroups. For the first subgroup 
(subgroup 1.1), nine studies used ML to estimate the foreground life 
cycle inventory. Three studies among these nine studies used ML to es-
timate environmental emissions, which directly served as part of fore-
ground life cycle inventories. Meng et al. (2019) used a linear regression 
model to predict greenhouse gas emissions, non-methane hydrocarbon 
and carbon monoxide from dual fuel diesel engines in oilfield opera-
tions. (Tao et al., 2018) estimated the release of organic chemicals from 
the use and post-use of chemical products with an artificial neural 
network (ANN) model. Nguyen et al. (2019) developed an ANN model as 
a surrogate model to estimate the greenhouse gas emissions and nutrient 
leaching of irrigated corn production systems at a high spatial resolution 
in eastern Colorado, USA. 

The other six studies within the first subgroup used ML to estimate 
the product characteristics, which were fed into additional models to 
estimate foreground life cycle inventory. For example, Cheng et al. 
(2020a) used a random forest approach to predict biochar yields and 
characteristics, which were incorporated into the LCA framework for 
estimating energy use and greenhouse gas emissions of slow pyrolysis. 
Similarly, Cheng et al. (2020b) developed several ML models to predict 
yields and characteristics of biobased chemicals derived from hydro-
thermal treatment, and then calculated energy consumption and 
greenhouse gas emissions of hydrothermal treatment processes. Liao 
et al. (2020) estimated the yield of activated carbon from the biomass 
feedstocks, which was fed into Aspen simulation and LCA framework to 

Fig. 2. The number of publications/year and application areas of the reviewed studies.  
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estimate energy use and carbon footprint of activated carbon produc-
tion. Besides these three applications in chemical life cycle inventory 
conducted by Cheng et al. (2020a); Cheng et al. (2020b) and Liao et al. 
(2020), two studies by Thilakarathna et al. (2020) and Naseri et al. 
(2020) applied ML techniques to enable the quantification of life cycle 
inventories of concrete. (Thilakarathna et al., 2020) compared five ML 
models to predict the compressive strength of concrete, then calculated 
the embodied carbon footprint based on the developed ML model. 
Naseri et al. (2020) used an ANN model to predict the compressive 

Table 2 
Categories of knowledge gaps addressed in the reviewed studies.  

Group 
# 

ML 
applications 

Addressed knowledge 
gaps 

Studies  

1 Value 
prediction 

Subgroup 1.1: Predicting 
unknown life cycle 
inventory of emerging 
technologies or products 

(Meng et al., 2019), ( 
Nguyen et al., 2019), ( 
Cheng et al., 2020a), ( 
Thilakarathna et al., 
2020), (Liao et al., 
2020), (Cheng et al., 
2020b), (Cornago et al., 
2020), (Naseri et al., 
2020), (Sharifa and 
Hammad, 2019) 

Subgroup 1.2:Estimating 
missing characterization 
factor 

(Hou et al., 2020), ( 
Slapnik et al., 2015a) 

Subgroup 1.3:Estimating 
life cycle impacts of 
emerging products or in 
understudied regions 

(Kaab et al., 2019), ( 
Khanali et al., 2017), ( 
Khoshnevisan et al., 
2013a), (Khoshnevisan 
et al., 2013b), ( 
Khoshnevisan et al., 
2014a), (Khoshnevisan 
et al., 2014b), (Mousavi- 
Avvala et al., 2017), ( 
Pishgar-Komleh et al., 
2020b), (Duprez et al., 
2019), (Vlontzosa and 
Pardalosb, 2017), (Zhu 
et al., 2020), (Ozbilen 
et al., 2013) 

Subgroup 1.4:Improving 
spatial and temporal 
explicitness of life cycle 
impacts of agriculture 

(Lee et al., 2020), ( 
Romeiko et al., 2020b) 

Subgroup 1.5:Providing 
rapid estimates of life 
cycle impacts for non-LCA 
experts 

(Płoszaj-Mazurek et al., 
2020), (Feng et al., 
2019), (Mao et al., 
2019), (D'Amico et al., 
2019), (Asif et al., 2019), 
(Azari et al., 2016), ( 
Song et al., 2017) 

Subgroup 1.6:Assessing 
uncertainty/sensitivity in 
life cycle impact estimates 

(Feng et al., 2019), ( 
Ziyadi and Al-Qadi, 
2019), (Abokersha et al., 
2020) 

Subgroup 1.7:Enabling 
optimization of product 
performance, cost and 
environmental impacts 

(Azari et al., 2016), ( 
Sharifa and Hammad, 
2019)  

2 
Dimension 
reduction 

Reducing the input 
parameters for 
quantifying 
characterization factors 

(Marvuglia et al., 2015a)  

3 
Feature 
ranking 

Revealing driving factors 
of life cycle impacts 

(Romeiko et al., 2020a), 
(Zhao et al., 2019)  

4 Classification 
Estimating environmental 
releases from chemical use 
(value prediction) 

(Tao et al., 2018)  

5 Clustering 

Clustering food sectors 
based on their 
sustainability 
performances (cluster) 

(Abdella et al., 2020)  

Table 3 
Categories of machine learning applications in various LCA stages.  

Group 
# 

MLs in various LCA stages Relevant articles  

1 Life cycle 
inventory 

Subgroup 
1.1: 
Estimating 
foreground 
life cycle 
inventory 

Estimating 
product 
properties 

(Cheng et al., 
2020a), ( 
Thilakarathna 
et al., 2020), ( 
Liao et al., 2020), 
(Cheng et al., 
2020b), ( 
Cornago et al., 
2020), (Naseri 
et al., 2020) 

Estimating 
environmental 
releases 

(Meng et al., 
2019), (Tao 
et al., 2018), ( 
Nguyen et al., 
2019) 

Subgroup 1.2: Estimating overall 
life cycle inventory 

(Sharifa and 
Hammad, 2019)  

2 
Life cycle 
impact 
assessment 

Subgroup 
2.1: 
Estimating 
life cycle 
impacts 

Agriculture 

(Lee et al., 2020), 
(Romeiko et al., 
2020b), (Duprez 
et al., 2019), ( 
Kaab et al., 
2019), (Khanali 
et al., 2017), ( 
Khoshnevisan 
et al., 2013a), ( 
Khoshnevisan 
et al., 2013b), ( 
Khoshnevisan 
et al., 2014a), ( 
Khoshnevisan 
et al., 2014b), ( 
Mousavi-Avvala 
et al., 2017), ( 
Pishgar-Komleh 
et al., 2020b), ( 
Nabavi- 
Pelesaraei et al., 
2018), ( 
Vlontzosa and 
Pardalosb, 2017) 

Building 

(Płoszaj-Mazurek 
et al., 2020), ( 
Feng et al., 
2019), (Mao 
et al., 2019), ( 
D'Amico et al., 
2019), (Asif 
et al., 2019), ( 
Azari et al., 
2016) 

Other areas 
such as 
chemicals and 
hydrogen 

(Zhu et al., 
2020), (Ozbilen 
et al., 2013), ( 
Song et al., 2017) 

Subgroup 2.2: Estimating 
characterization factors 

(Hou et al., 
2020), ( 
Marvuglia et al., 
2015a), (Slapnik 
et al., 2015a)  

3 
Life cycle 
impact 
interpretation 

Subgroup 3.1:Supply chain 
optimization 

(Azari et al., 
2016), (Sharifa 
and Hammad, 
2019) 

Subgroup 3.2:Identifying the top 
influential factors 

(Romeiko et al., 
2020a), (Zhao 
et al., 2019) 

Subgroup 3.3: Uncertainty and 
sensitivity assessment 

(Feng et al., 
2019), (Ziyadi 
and Al-Qadi, 
2019), ( 
Abokersha et al., 
2020) 

(continued on next page) 
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strength of concrete, which was consequently used as a sustainability 
criteria along cost, energy consumption and life cycle carbon emissions 
for designing sustainable concrete mix. Additionally, Cornago et al. 
(2020) forecasted the hourly power generation for each energy source, 
which was then fed into the LCA model for estimating carbon emissions 
of energy mix. 

For the second subgroup (subgroup 1.2), only one study was iden-
tified. Sharifa and Hammad (2019) developed a surrogate ANN for 
estimating cost and total life cycle inventory, which includes both 
foreground and background life cycle inventory. 

3.4.2. ML for life cycle impact assessment 
Out of the total 40 studies, 22 studies applied ML techniques in the 

life cycle impact assessment stage. Based upon their focus areas, these 22 
studies can be classified into two subgroups. The first subgroup (sub-
group 2.1), including most of the studies in this group (19 studies out of 
22 studies), adopted ML approaches to estimate life cycle impacts of 
agricultural products, buildings or energy systems. More than half of 
these 19 studies focused on life cycle impacts of agriculture. For 
example, Kaab et al. (2019) employed both artificial neural networks 
and adaptive neuro fuzzy inference system models for predicting life 
cycle environmental impacts and output energy of sugarcane production 
in planted or ratoon farms. Similarly, two studies assessed life cycle 
environmental impacts of strawberry (Khoshnevisan et al., 2013a) and 
rice (Khoshnevisan et al., 2014b) with both artificial neural networks 
and adaptive neuro fuzzy inference system models. Nabavi-Pelesaraei 
et al. (2018) also used the same modeling approaches to predict energy 
output and environmental impacts of paddy production. Khanali et al. 
(2017) predicted the yield and life cycle environmental impacts in tea 
processing units in Guilan province of Iran with an artificial neural 
network model. Khoshnevisan et al. (2013a); Khoshnevisan et al. 
(2014a); Khoshnevisan et al. (2013b); Khoshnevisan et al. (2014b) 
assessed environmental impacts of potato, tomato and cucumber pro-
duction with adaptive neuro fuzzy inference system models. Mousavi- 
Avvala et al. (2017) also used an adaptive neuro fuzzy inference system 
model to estimate energy use and environmental impacts of oilseed 
production. While the majority of these studies reported the spatially 
generic or coarse environmental impacts, two studies utilized ML tech-
niques to compute spatially explicit environmental impacts. Romeiko 
et al. (2020b) compared six ML methods for predicting spatially explicit 
annual life cycle impacts of corn production in the US Midwest region 
from 2000 to 2008. Lee et al. (2020) used a boosted regression tree 
(BRT) model to project spatially explicit life cycle impacts of corn pro-
duction in the US Midwest region under future climate scenarios. 

The second largest focus area was the built environment, with four 
studies including Płoszaj-Mazurek et al. (2020), Mao et al. (2019), 
D'Amico et al. (2019) and Duprez et al. (2019) adopting ML methods to 
estimate life cycle impacts of buildings. For example, Płoszaj-Mazurek 
et al. (2020) applied three ML models to quickly estimate total carbon 
footprint of buildings and to enable the optimal architecture design 
during the early design phases. Mao et al. (2019) compared regression 
models for estimating life cycle carbon emissions during the building 
design stage. D'Amico et al. (2019) developed ANN models for rapidly 
estimating energy and life cycle environmental impacts of buildings 
during early design stage. Duprez et al. (2019) developed an ANN model 
to rapidly predict the global warming potential of new building design 

alternatives. 
In addition to agriculture and building, ML has been utilized to es-

timate life cycle impacts of chemicals, energy and mining systems. Song 
et al. (2017) and Zhu et al. (2020) used ANN models to estimate life 
cycle impacts of chemicals. Ozbilen et al. (2013) built a ANN model to 
estimate global warming potential, acidification potential, and 
hydrogen plant efficiency of nuclear-based hydrogen production sys-
tems. Pishgar-Komleh et al. (2020b) applied ANN models to calculate 
life cycle energy use, greenhouse gas emission, and economic costs, 
which were then fed into a multi-objective optimization model. Asif 
et al. (2019) developed an ANN model to estimate the carbon footprint 
of a mining system. 

The second subgroup of studies (subgroup 2.2), including Hou et al. 
(2020), Marvuglia et al. (2015a), and Slapnik et al. (2015a), utilized ML 
to predict characterization factors (CFs) of chemicals. Hou et al. (2020) 
developed ML models to estimate ecotoxicity hazardous concentrations 
50 % (HC50) in USEtox to calculate chemicals' CFs. Marvuglia et al. 
(2015a) carried out a thorough exploratory data analysis to identify and 
select input parameters for predicting fate factors and intake fractions of 
chemicals. Slapnik et al. (2015a) computed chemical CFs in Slovenian 
and compared them with other European CFs. 

3.4.3. ML for life cycle interpretation 
ML techniques were applied to support life cycle interpretation in 

four different manners. First, two studies utilized ML models to solve 
optimization problems with the goal of minimizing life cycle environ-
mental impacts and economic costs. For example, Sharifa and Hammad 
(2019) developed surrogate ANN for selecting near-optimal building 
energy renovation methods, which considers minimizing energy con-
sumption, cost and environmental impacts as the multi-objectives. Azari 
et al. (2016) used a hybrid ANN and a genetic algorithm approach to 
enable optimization of building designs. 

Second, two LCA studies used ML techniques to identify patterns and 
drivers of life cycle impacts. Romeiko et al. (2020b) used BRT to identify 
key contributors affecting the spatially and temporally explicit life cycle 
impacts of soybean production. Zhao et al. (2019) used random forest to 
identify the drivers for life cycle carbon footprints of herdsmen in the 
typical steppe region of Inner Mongolia, China. 

Third, ML models were used to understand uncertainty and sensi-
tivity of life cycle impacts in three studies. Feng et al. (2019) used an 
integrated fuzzy C-means clustering and extreme learning machine to 
assess the uncertainty of buildings' environmental impacts in early 
design stages. Ziyadi and Al-Qadi (2019) built an ANN surrogate model 
in conjunction with interval, Bayesian and model correction analysis 
methods to estimate input, parameter and model uncertainty. Aboker-
sha et al. (2020) identified optimal integration of solar assisted district 
heating in urban communities by using ML incorporating global sensi-
tivity analyses. 

Fourth, ML models were used for classification and assessing re-
lationships between indicators and sustainability impacts. Abdella et al. 
(2020) used a centroid-based clustering approach to classify the food 
industries, and used a logistic regression model to assess the relationship 
between the sustainability indicators and the total impacts of food 
industries. 

3.5. Types of ML models in LCA studies 

As shown in Table 4, the unsupervised machine learning approaches 
applied in LCA studies included linear models, tree-based models, neural 
networks, nature-inspired optimization algorithms, distance-based 
models and deep learning approaches. The linear models, such as 
linear regression, logistic regression, partial least regression and 
Gaussian process regression models, describe a continuous response 
variable as a function of one or more predictor variables. Tree-based 
models are a class of nonparametric algorithms that partition the 
feature space into a number of non-overlapping regions with similar 

Table 3 (continued ) 

Group 
# 

MLs in various LCA stages Relevant articles 

Subgroup 3.4: Assessing 
relationships between 
sustainability indicators and 
sustainability impacts 

(Abdella et al., 
2020)  
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response values using a set of splitting rules. Nature-inspired algorithms 
are a set of novel problem-solving methodologies and approaches 
derived from natural processes. Distance-based Models classify queries 
by computing distances between these queries and a number of inter-
nally stored exemplars. Neural networks mimic the human brain in 
structure. Simple neural networks consist of an input, hidden, and 
output layer. Deep learning systems are neural networks consisting of 
several hidden layers arranged for convolution or recurrence. Super-
vised machine learning approaches applied in LCA studies included 
clustering and feature extraction. Cluster analysis is the art of finding 
groups in data, which is a branch of pattern recognition. Principle 
component analysis is a versatile statistical method for reducing a cases- 
by-variables data table to its essential features, called principle com-
ponents. Principle component analysis is frequently used for reducing 
dimension and extracting features. 

ANN was the most frequently applied ML approach, appearing in 26 
studies (Table 4). Adaptive neuro-fuzzy inference systems, which was 
used by six studies, ranked as the second most frequently applied ML 
approach. Linear regression and random forest were adopted by five 
studies, respectively. Gradient boosting regression and support vector 
machine were utilized by four studies, respectively. Decision tree was 
employed by two studies. Each of the rest ML approaches only appeared 
in one study, respectively. 

Most studies used a single ML method. Only 14 out of 40 used more 
than one ML method. Among these 14 studies, 10 studies compared 
various ML methods to determine the most accurate and rapid ML. 
Overall, these comparative studies suggest distinct ML methods perform 
the best for varied studies. Four studies, including Khoshnevisan et al. 
(2013a); Khoshnevisan et al. (2014a); Khoshnevisan et al. (2013b); 
Khoshnevisan et al. (2014b) and Mousavi-Avvala et al. (2017), found 
Adaptive neuro-fuzzy inference systems (ANFIS) had the highest pre-
dictive accuracy. In contrast, Thilakarathna et al. (2020), Duprez et al. 
(2019), Kaab et al. (2019) and Pishgar-Komleh et al. (2020b) reported 
that ANN provided the highest predictive accuracy instead. Two studies 
found random forest outperformed other models. For example, (Hou 
et al., 2020) found that random forest performed best among K nearest 
neighbor, support vector machine, neural network, random forest, 
adaptive boosting, and gradient boosting machine. Consistent with Hou 
et al. (2020), Cheng et al. (2020b) also found that random forest gave 
the best performance. In contrast, Romeiko et al. (2020b) identified 
gradient boosting regression tree as the most accurate and rapid option, 
compared with linter regression, support vector machine, ANN, random 
forest, and extreme gradient boosting. (Naseri et al., 2020) found that 
the water cycle algorithm performed better than the other five ML 
methods. (Mao et al., 2019) found that support vector machine ranked 
as the best performing model. Additionally, Thilakarathna et al. (2020), 
Romeiko et al. (2020b), Cheng et al. (2020b) and Naseri et al. (2020) 

Table 4 
Machine learning approaches used in the reviewed studies.  

ML category ML subcategory ML algorithm Studies 

Supervised 
learning 

Linear models 

Linear regression 

(Thilakarathna et al., 
2020), (Romeiko et al., 
2020b), (Cheng et al., 
2020b), (Naseri et al., 
2020), (Meng et al., 
2019) 

Logistic 
regression 

(Slapnik et al., 2015a) 

Partial least 
squares 
regression 

(Marvuglia et al., 
2015a) 

Gaussian process 
regression 

(Thilakarathna et al., 
2020) 

Tree-based 
models 

Decision tree 
(Thilakarathna et al., 
2020), (Cheng et al., 
2020b) 

Random forests 

(Cheng et al., 2020a), ( 
Hou et al., 2020),( 
Cheng et al., 2020b), ( 
Mao et al., 2019), ( 
Zhao et al., 2019) 

Adaptive 
boosting 

(Hou et al., 2020) 

Gradient 
boosting 

(Hou et al., 2020), ( 
Płoszaj-Mazurek et al., 
2020), (Romeiko et al., 
2020a), (Lee et al., 
2020), (Romeiko et al., 
2020b) 

Extreme gradient 
boosting 

(Romeiko et al., 2020b) 

Neural 
Networks 

Artificial Neural 
Network 

(Zhu et al., 2020), ( 
Thilakarathna et al., 
2020), (Romeiko et al., 
2020b), (Hou et al., 
2020), (Liao et al., 
2020), (Sharifa and 
Hammad, 2019), ( 
Ziyadi and Al-Qadi, 
2019), (Cornago et al., 
2020), (Naseri et al., 
2020), (Abokersha 
et al., 2020), (Mao 
et al., 2019), (D'Amico 
et al., 2019),(Duprez 
et al., 2019), (Tao et al., 
2018), (Nguyen et al., 
2019), (Asif et al., 
2019), (Azari et al., 
2016), (Kaab et al., 
2019), (Khanali et al., 
2017), (Khoshnevisan 
et al., 2013a), ( 
Khoshnevisan et al., 
2013b), (Nabavi- 
Pelesaraei et al., 2018), 
(Ozbilen et al., 2013), ( 
Pishgar-Komleh et al., 
2020a), (Song et al., 
2017), (Vlontzosa and 
Pardalosb, 2017) 

Adaptive neuro- 
fuzzy inference 
systems 

(Kaab et al., 2019), ( 
Khoshnevisan et al., 
2013a), (Khoshnevisan 
et al., 2014a), ( 
Khoshnevisan et al., 
2014b), (Mousavi- 
Avvala et al., 2017), ( 
Nabavi-Pelesaraei 
et al., 2018) 

Nature-inspired 
optimization 
algorithm 

Water cycle 
algorithm 

(Naseri et al., 2020)  

Table 4 (continued ) 

ML category ML subcategory ML algorithm Studies 

Soccer league 
competition 
algorithm 

(Naseri et al., 2020) 

Distance-based 
Models 

Support Vector 
Machine 

(Thilakarathna et al., 
2020), (Hou et al., 
2020), (Naseri et al., 
2020), (Mao et al., 
2019) 

K nearest 
neighbor (Hou et al., 2020) 

Deep Learning 
Convolutional 
neural network 

(Płoszaj-Mazurek et al., 
2020) 

Unsupervised 
learning 

Clustering K-means (Abdella et al., 2020) 
Fuzzy C-means (Feng et al., 2019) 

Feature 
Extraction 

Principle 
component 
analysis 

(Mao et al., 2019)  
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found that the linear model showed the poorest fit for the data. 

3.6. Sources and sample sizes of datasets for ML models in LCA studies 

The largest cluster of studies utilized LCA simulations as training sets 
for ML. Romeiko et al. (2020a) and Lee et al. (2020) used outputs from 
process-based LCA modeling along with climate, soil and farming 
practices information. D'Amico et al. (2019) and Feng et al. (2019) 
generated training datasets by coupling building information and 
process-based LCA modeling. (Zhao et al., 2019) used process-based LCA 
modeling datasets based on a survey. The publications by Kaab et al. 
(2019), Khanali et al. (2017), Mousavi-Avvala et al. (2017), and Nabavi- 
Pelesaraei et al. (2018), used life cycle modeling results along with 
survey information as training datasets. Pishgar-Komleh et al. (2020b) 
trained the ANN model with process-based LCA modeling results, which 
used questionnaires to compile life cycle inventory. Azari et al. (2016) 
and Ozbilen et al. (2013) used process-based LCA modeling results as 
training datasets. Additionally, Abdella et al. (2020) used outputs from 
input-output LCA modeling. 

Besides using LCA simulated datasets, sector-specific, sensitivity and 
optimization models also provided training datasets for ML techniques. 
For example, Płoszaj-Mazurek et al. (2020) used Grasshopper scripts to 
generate training datasets for ML in the building sector. Abokersha et al. 
(2020) used the TRNSYS model simulations as training datasets in the 
energy sector. The training datasets are from the process-based DayCent 
agroecosystem simulation model in Nguyen et al. (2019)'s study. 
(Duprez et al., 2019) used datasets generated from sensitivity analysis 
for ML model training. Sharifa and Hammad (2019) generated training 
datasets from a multi-objective optimization model. 

Existing LCA databases were frequently used as major sources of 
datasets for training ML models, as demonstrated by six studies, 
including Zhu et al. (2020), Hou et al. (2020), Marvuglia et al. (2015a), 
Slapnik et al. (2015a), Song et al. (2017) and Tao et al. (2018). For 
example, Zhu et al. (2020) supplied ecoinvent v3.5 database and a 
ReCiPe model to provide training datasets. Hou et al. (2020) and Mar-
vuglia et al. (2015a) used the USEtox v2.11 database. Slapnik et al. 
(2015a) used the characterization factor database from the ReCiPe 1.08 
model. Song et al. (2017) relied on the ecoinvent database. Tao et al. 
(2018) obtained training datasets from the European Union's specific 
environmental release categories, which included chemical release 
factors to environmental compartments (indoor air, outdoor air, 
wastewater and soil) for chemicals in different products. 

The datasets used for training ML models can also originate from 
literature and lab/field experiments. Five studies, including Thilakar-
athna et al. (2020), Liao et al. (2020), Cheng et al. (2020a), Ziyadi and 
Al-Qadi (2019), and Naseri et al. (2020), used literature reported values. 
Moreover, Cheng et al. (2020b) relied on both literature values and lab 
experiments. Meng et al. (2019) used a combination of literature, field 
testing, and public datasets. Furthermore, Asif et al. (2019) collected 
field datasets from different equipment and mining activities. Some 
studies, including Vlontzosa and Pardalosb (2017), didn't specify the 
training datasets. 

The sample size of the datasets used for these ML training ranged 
from 64 to 21,656. The median value of the sample size is 538. Only five 
studies had over 5000 samples. For example, Romeiko et al. (2020a); 
Romeiko et al. (2020b) had around 5000 samples for soybean LCAs. 
Romeiko et al. (2020b) and Lee et al. (2020) used around 8000 samples 
for corn LCAs. Duprez et al. (2019) used 5000, 10,000 and 15,000 
samples for three different ML models, respectively. Nguyen et al. 
(2019) reported the largest sample size of 21,656. Overall, the majority 
of LCA studies (over 70 %) relied on a small number of datasets (less 
than 1500) for training the ML models. 

3.7. ML model training and evaluation 

3.7.1. ML model training and evaluation methods 
Before applying a ML model to generate LCI, conduct impact 

assessment or assist with life cycle interpretation, it is critical to ensure 
the ML model can provide satisfactory prediction. Two model training 
and evaluation strategies are used in the reviewed studies (Table 5 and 
Fig. S1). The first strategy is the holdout method, in which the available 
datasets are divided into two groups: training and testing. A ML model is 
trained with the training dataset and tested on the testing dataset. The 
second strategy is cross-validation, which divides the entire dataset into 
two groups: (1) training and validation dataset and (2) testing dataset. 
The training and validation dataset is used to deterring the optimal ML 
model structure and parameter settings, while the testing dataset pro-
vides independent assessment of ML performance to decide if the 
training ML model is capable to provide satisfactory results. 

One-fold cross validation was the most popular approach, which was 
used by twelve studies. The hold-out method was the second most 
popular approach, which was employed by nine studies. Following one- 
fold cross validation and hold-out methods, ten-fold cross validation was 
the third most popular approach, which was adopted by seven studies. 
Apart from ten-fold cross validation, other multi-folds validation ap-
proaches were also used, including three-fold and five-fold validation 
approaches. Three-fold validation approach was used by two studies, 
and five-fold cross validation was used by only one study. Moreover, 
three studies employed either Monte Carlo cross-validation or leave-one 
out validation approaches, which are variants of multi-fold cross vali-
dation approaches. For example, Meng et al. (2019) used the Monte 
Carlo cross-validation, in which a prescribed proportion of the training 
and validation dataset is randomly selected as training dataset and the 
rest is used for validation. Furthermore, two studies used the cross- 
validation method, but didn't explicitly mention the details such as the 
number of folds. Additionally, five studies didn't provide details 

Table 5 
Training datasets used for machine learning in the reviewed studies.  

Groups Training databases Studies  

1 LCA modeling outputs (Romeiko et al., 2020a), (Lee et al., 
2020), (Romeiko et al., 2020b), ( 
D'Amico et al., 2019), (Feng et al., 
2019), (Zhao et al., 2019) (Kaab 
et al., 2019), (Khoshnevisan et al., 
2013a), (Khoshnevisan et al., 
2013b), (Khoshnevisan et al., 
2014a), (Khoshnevisan et al., 
2014b), (Khanali et al., 2017), ( 
Mousavi-Avvala et al., 2017), ( 
Nabavi-Pelesaraei et al., 2018) ( 
Pishgar-Komleh et al., 2020b), ( 
Azari et al., 2016) (Ozbilen et al., 
2013), (Abdella et al., 2020)  

2 Other modeling outputs (i.e. 
sector-specific, sensitivity, 
optimization modeling outputs) 

(Płoszaj-Mazurek et al., 2020), ( 
Abokersha et al., 2020), (Nguyen 
et al., 2019), (Duprez et al., 2019), ( 
Sharifa and Hammad, 2019)  

3 Existing LCA databases (i.e. 
ecoinvent) 

(Zhu et al., 2020), (Hou et al., 
2020), (Marvuglia et al., 2015a), ( 
Slapnik et al., 2015a), (Song et al., 
2017), (Tao et al., 2018), (Zhu 
et al., 2020), (Hou et al., 2020), ( 
Marvuglia et al., 2015a), (Slapnik 
et al., 2015a), (Song et al., 2017), ( 
Tao et al., 2018)  

4 Literature and lab experiment 
datasets 

(Thilakarathna et al., 2020), (Liao 
et al., 2020), (Cheng et al., 2020a), ( 
Ziyadi and Al-Qadi, 2019), (Naseri 
et al., 2020), (Cheng et al., 2020b), 
(Meng et al., 2019), (Asif et al., 
2019), (Vlontzosa and Pardalosb, 
2017)  
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regarding model validation, so it was impossible to classify these five 
studies. 

The splits between training, validation, and testing datasets were 
often sampled randomly, and the corresponding shares varied across 
studies. The studies using the hold-out methods divided total datasets 
for training and validation purposes, whose training datasets repre-
sented 10 % to 85 % of total datasets. For example, (Abdella et al., 2020) 
had 65 % and 35 % for training and validation, respectively. Two 
studies, authored by Sharifa and Hammad (2019) and Azari et al. (2016) 
increased the training ratio to 70 %. Mousavi-Avvala et al. (2017) used 
80 % and 20 % for training and validation ratios, respectively. D'Amico 
et al. (2019) and Tao et al. (2018) had the largest training ratio of 85 % 
among these hold-out studies. Additionally, Nguyen et al. (2019) varied 
the proportion from 10 % to 70 % with an increment of 20 %. 

The studies using cross-validation approaches divided total datasets 
into training, validation and testing subsets. For the studies using cross- 
validation approaches, the most frequently used splitting ratio was 70 
%, 15 % and 15 % for training, validation and testing, respectively. Nine 
studies used this popular splitting ratio including seven one-fold cross 
validation studies, and one three-fold cross validation and one study 
which didn't detail folds of cross-validation. Other cross-validation 
studies varied this popular splitting ratio by ±15 %. Song et al. (2017) 
allocated the highest fraction of the dataset for training (ca. 85 %) and 
the least fraction for testing (ca. 5 %). Mao et al. (2019) had the lowest 
fraction of the datasets for training (ca. 60 %) and highest fraction for 
testing (ca. 20 %). In general, the reported training and validation 
datasets combined represent 70 %–90 % of the total, and the testing 
dataset represents less or equal to 20 %. Additionally, it is worth noting 
that fourteen of the total forty reviewed studies did not report the split 
between training, validation and testing datasets. 

3.7.2. ML model training and evaluation metrics 
A wide range of metrics have been used to evaluate ML model per-

formance (Table 6). As most of the ML applications aim to map an array 
of inputs to continuous response variables, metrics that measure the 
correlation or difference between predicted and observed response 
variables are most often used. First, the coefficient of determination 
(R2), root mean square error (RMSE) and Mean absolute percentage 
error were found to be the three most frequently used metrics. R2 ranked 
as the most frequently used metric, which appeared in 31 studies. RMSE 
used by 18 studies was the second most frequently used metric (Table 7). 
Mean absolute percentage error adopted by 12 studies was the third 
most frequently used metric. Moreover, the derivatives of these three 
most popular metrics were also used to evaluate the predictive accuracy, 
including mean square error, mean absolute error (MAE), correlation 
coefficient (R), coefficient of variance, root relative square error, 
normalized root mean square error (NRMSE), and percentage of data 
whose mean absolute percentage error is less than 30 % (E30). Slightly 
different from the aforementioned metrics, Feng et al. (2019) examined 
whether the observations fall within the ML model predicted 95 % in-
terval. Abdella et al. (2020) used Akaike information criterion to eval-
uate the accuracy of predicted categorical membership. Furthermore, 
different metrics were used to evaluate model performance in classifi-
cation problems. For example, Tao et al. (2018) used Precision, recall, 
and F1 score to assess the accuracy of distribution (in percent) of 
chemicals related to different endpoints. Last, two studies conducted by 
Ziyadi and Al-Qadi (2019) and Zhao et al. (2019) didn't mention the 
performance metrics. 

The number of evaluation metrics used in these studies varied from 
one to six. The majority of studies used one metric (15 studies, 37.5 %) 
or two metrics (13 studies, 32.5 %). For example, studies conducted by 
Płoszaj-Mazurek et al. (2020), Romeiko et al. (2020a), Lee et al. (2020), 
Liao et al. (2020), Sharifa and Hammad (2019), Marvuglia et al. 
(2015a), Cornago et al. (2020), and Azari et al. (2016) used either R2 or 
MSE. Eight studies used three metrics. Additionally, studies performed 
by Naseri et al. (2020) and Mao et al. (2019) used five or more metrics, 

including coefficient of determination (R2), correlation coefficient (R), 
root mean square error (RMSE), mean absolute error (MAE), mean 
square error (MSE), normalized root mean square error (NRMSE), co-
efficient of variance of the RMSE, and percentage of data whose mean 
absolute percentage error is less than 30 % (E30). 

The reported ML model performance varies widely across studies or 
application purposes of the same ML model. For example, (Romeiko 
et al., 2020a) achieved R2 from 0.64 to 0.78 for predicting life cycle 
global warming, eutrophication and acidification impacts. (Hou et al., 
2020) achieved R2 of 0.63 for predicting hazardous concentrations for 
ecotoxicity. Liao et al. (2020) reached 0.971 for predicting total AC 
yield. Even with the same inputs, the ML model trained by Mousavi- 
Avvala et al. (2017) had RMSE and MAE larger than 10 when applied to 
predict output energy, but had RMSE and MAE less than 1 for predicting 
the benefit to cost ratio. These results clearly show the substantial 
variability in the cases applying ML models to support LCA. 

4. Discussion 

4.1. Merits of applying ML in LCA 

ML models present unique merits such as capabilities of enabling 
accurate prediction, discovering complex patterns, and efficiently 
analyzing large datasets. First, the majority of the reviewed LCA studies 
relied on ML's high predictive accuracy to fill in the missing values for 
life cycle inventories or impacts (Tables 2 and 3). Since the data char-
acterizing these emerging products/technologies often doesn't exist, 
building predictive models based upon characteristics of existing 

Table 6 
Model training and validation approaches employed by different studies.  

Group 
# 

Model training and validation 
approaches 

Studies  

1 Hold-out (Abdella et al., 2020), (Liao et al., 
2020), (Sharifa and Hammad, 
2019), (D'Amico et al., 2019), ( 
Tao et al., 2018), (Nguyen et al., 
2019), (Azari et al., 2016), ( 
Khoshnevisan et al., 2014b), ( 
Mousavi-Avvala et al., 2017)  

2 Cross- 
validation 

One fold (Zhu et al., 2020), (Feng et al., 
2019), (Cornago et al., 2020), ( 
Asif et al., 2019), (Kaab et al., 
2019), (Khanali et al., 2017), ( 
Khoshnevisan et al., 2013b), ( 
Khoshnevisan et al., 2013b), ( 
Pishgar-Komleh et al., 2020b), ( 
Pishgar-Komleh et al., 2020a), ( 
Song et al., 2017), (Vlontzosa 
and Pardalosb, 2017) 

three folds 
(Romeiko et al., 2020b), (Duprez 
et al., 2019) 

five folds (Hou et al., 2020) 

ten folds 

(Cheng et al., 2020a), ( 
Thilakarathna et al., 2020), ( 
Romeiko et al., 2020a), (Lee 
et al., 2020), (Cheng et al., 
2020b), (Slapnik et al., 2015a), ( 
Mao et al., 2019) 

Monte Carlo cross- 
validation (Meng et al., 2019) 

leave-one out cross- 
validation 

(Marvuglia et al., 2015a), (Naseri 
et al., 2020) 

Mentioned cross- 
validation, but no 
specific details 

(Abokersha et al., 2020), ( 
Khoshnevisan et al., 2013a)  

3 No details regarding model 
validation 

(Płoszaj-Mazurek et al., 2020), ( 
Ziyadi and Al-Qadi, 2019), (Zhao 
et al., 2019), (Khoshnevisan 
et al., 2014a), (Khoshnevisan 
et al., 2014b)  
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products provides an alternative means for generating life cycle in-
ventory. For example, Cheng et al. (2020a) applied ML to estimate 
biochar characteristics in order to compile a life cycle inventory. Meng 
et al. (2019) used ML approach to fill in data gaps for life cycle inventory 
of dual fuel technology. Meanwhile, the merit of high predictive accu-
racy also led to success of estimating life cycle impacts of alternative 
building designs and future agricultural production. For example, 
Płoszaj-Mazurek et al. (2020) and D'Amico et al. (2019) predicted 
environmental impacts of buildings with various design characteristics. 
Lee et al. (2020) used historical life cycle impacts to predict life cycle 
impacts of corn under future climate scenarios. 

Second, ML provides novel insights towards drivers and patterns of 
environmental performances, which aids decision makers in forming 
solutions capable of improving environmental performances. For 
example, Hou et al. (2020) identified key influential factors for chemical 
toxicity. Romeiko et al. (2020b) ranked the importance of soil, weather 
and farming practices for spatially and temporally explicit life cycle 
impacts. Abdella et al. (2020) assessed quantitative and qualitative re-
lationships between the sustainability indicators and the total sustain-
ability impact of food industries. These findings reveal the underlying 
drivers causing environmental damages and assist in designing targeted 
intervention strategies capable of mitigating environmental damages. 

Finally, compared with traditional process-based models, ML models 
showed faster execution, and flexible integration into other simulation 
platforms (i.e. optimization platforms). Such advantages allow ML 
models to rapidly complete a high number of simulation runs, therefore 
making ML models affordable for a range of computationally intensive 
tasks such as optimization, uncertainty and sensitivity assessment. 
Several studies used ML as surrogate models to generate life cycle im-
pacts fed into optimization models, since ML surrogate models can 
rapidly provide accurate estimates, and be easily integrated into opti-
mization platforms. For example, Sharifa and Hammad (2019) and Azari 
et al. (2016) utilized ML to support optimization tasks. Nguyen et al. 
(2019) used ML and optimization approaches to suggest management 
options for agricultural landscape. Similarly, uncertainty and sensitivity 
assessments are computationally intensive jobs too. ML surrogate 
models served as ideal approaches to efficiently and accurately carry out 
many simulations for uncertainty and sensitivity assessment, which can 
be difficult for traditional process-based models. 

4.2. Challenges of applying ML in LCA 

4.2.1. Lack of data 
Lack of training datasets presents a major bottleneck for applying ML 

in LCA. Most of these reviewed studies used a small sample size, which is 
less than 1500 datasets for training ML models. Usually, a larger sample 
size rewards a more representative and accurate ML model. A few 
studies with over 5000 samples relied on simulation data generated by 
other models, often process-based models, to provide training datasets. 

Table 7 
Model performances and associated metrics.  

Groups Model performance metrics Studies 

Regression 
Related 
metrics 

Coefficient of determination 
(R2) 

(Cheng et al., 2020a), (Płoszaj- 
Mazurek et al., 2020), (Zhu 
et al., 2020), (Thilakarathna 
et al., 2020), (Romeiko et al., 
2020a), (Lee et al., 2020), ( 
Abdella et al., 2020), ( 
Romeiko et al., 2020b), (Hou 
et al., 2020), (Liao et al., 
2020), (Cheng et al., 2020b), ( 
Marvuglia et al., 2015a), ( 
Naseri et al., 2020), ( 
Abokersha et al., 2020), (Mao 
et al., 2019), (D'Amico et al., 
2019), (Meng et al., 2019), ( 
Duprez et al., 2019), (Nguyen 
et al., 2019), (Asif et al., 2019), 
(Kaab et al., 2019), (Khanali 
et al., 2017), (Khoshnevisan 
et al., 2013a), (Khoshnevisan 
et al., 2013b), (Khoshnevisan 
et al., 2014b), (Mousavi- 
Avvala et al., 2017), (Pishgar- 
Komleh et al., 2020b), ( 
Ozbilen et al., 2013), (Pishgar- 
Komleh et al., 2020a), (Song 
et al., 2017), (Vlontzosa and 
Pardalosb, 2017) 

Correlation coefficient (R) 

(Romeiko et al., 2020b), ( 
Slapnik et al., 2015a), (Naseri 
et al., 2020), (Khoshnevisan 
et al., 2014a), (Vlontzosa and 
Pardalosb, 2017) 

Adjusted R-square (R-adj) (Abokersha et al., 2020) 

Root mean square error 
(RMSE) 

(Cheng et al., 2020a), (Zhu 
et al., 2020), (Thilakarathna 
et al., 2020), (Hou et al., 
2020), (Cheng et al., 2020b), ( 
Naseri et al., 2020), (D'Amico 
et al., 2019), (Meng et al., 
2019), (Duprez et al., 2019), ( 
Nguyen et al., 2019), (Khanali 
et al., 2017), (Khoshnevisan 
et al., 2013a), (Khoshnevisan 
et al., 2013b), (Khoshnevisan 
et al., 2014a), (Khoshnevisan 
et al., 2014b), (Mousavi- 
Avvala et al., 2017), (Pishgar- 
Komleh et al., 2020b), ( 
Pishgar-Komleh et al., 2020a) 

Mean absolute percentage 
error (MAPE) 

(Cornago et al., 2020), ( 
Abokersha et al., 2020), (Mao 
et al., 2019), (Meng et al., 
2019), (Kaab et al., 2019), ( 
Khanali et al., 2017), ( 
Khoshnevisan et al., 2013a), ( 
Khoshnevisan et al., 2014a), ( 
Khoshnevisan et al., 2014b), ( 
Pishgar-Komleh et al., 2020b), 
(Pishgar-Komleh et al., 
2020a), (Song et al., 2017) 

Mean square error (MSE) 

(Romeiko et al., 2020b), d( 
Sharifa and Hammad, 2019), ( 
Naseri et al., 2020), (Asif et al., 
2019), (Azari et al., 2016), ( 
Vlontzosa and Pardalosb, 
2017) 

Mean absolute error (MAE) 

(Thilakarathna et al., 2020), ( 
Naseri et al., 2020), (Mao 
et al., 2019), (Khoshnevisan 
et al., 2013b), (Mousavi- 
Avvala et al., 2017) 

Coefficient of variation (CV) 
(Abokersha et al., 2020), (Mao 
et al., 2019)  

Table 7 (continued ) 

Groups Model performance metrics Studies 

Akaike information criterion 
(AIC) (Abdella et al., 2020) 

Whether the observation fall 
within the ML model 
predicted 95 % interval 

(Feng et al., 2019) 

Percentage of data whose 
mean absolute percentage 
error is less than 30 % (E30) 

(Naseri et al., 2020) 

Root relative square error 
(RRSE) (Slapnik et al., 2015a) 

Normalized root mean 
square error (NRMSE) (Mao et al., 2019) 

Classification 
related metrics 

Precision (Tao et al., 2018) 
recall (Tao et al., 2018) 
F1 score (Tao et al., 2018)  
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The computation burden for generating large training datasets could 
restrain the adoption of ML models, especially when the computing 
infrastructure is not available for expensive process-based modeling 
simulations. Additionally, although ecoinvent and other LCA databases 
are growing, their sizes remain smaller than the ML's databases in other 
disciplines such as earth and public health sciences. Ecoinvent v3.9, one 
of the largest LCI commercial databases, currently contains more than 
18,000 industrial or agricultural processes covering around 3300 
distinct products and is about 350 MB (The Ecoinvent Association). In 
comparison, the accumulated volume of remote sensing data obtained 
from satellite, airborne, unmanned aerial vehicles and ground-based 
instruments by 2020 has reached ~1.3 EB, and this number will keep 
increasing with the expansion of observation capacities and spatial 
temporal resolutions (Li et al., 2023). In healthcare, it was estimated 
that a single patient generates close to 80 megabytes/year in imaging 
and electronic medical record data (Suter-Crazzolara, 2018). Overall, 
the availability of high-quality training datasets remains a challenge for 
applying ML in LCAs. 

4.2.2. Lack of detailed description about model selection and evaluation 
The discussion of ML selection is limited. Most of these studies didn't 

mention sufficient details about the algorithm's selection and imple-
mentation. While most of these surveyed studies report results for a 
single ML algorithm, the readers would benefit from learning why the 
specific algorithm was chosen and how the choice was made. 

There is also a lack of guidelines for model training. It's worth noting 
that tradeoffs between computational efficiency and accuracy exist 
among the choices of model training approaches. The holdout method is 
simpler than cross-validation and only requires one iteration of model 
training, making it computationally inexpensive relative to cross- 
validation. However, the holdout method could yield highly variable 
testing results, as the division of the dataset into training and testing 
samples are arbitrary. Although the one-fold cross-validation splits the 
entire dataset into three groups, which include the testing dataset that 
was not used for training and validation model performance, it shares 
the same weakness resulting from not fully using the data from the 
training and validating dataset. The computational efficiency of the 
hold-out and one-fold cross-validation is desired when the sample data 
size is large and a long time is required for model training. However, 
given that the sample size of the reviewed studies is generally less than 
5000, the use of multi-fold cross-validation is preferred to fully employ 
the information from the available data. Despite the number of folds of 
cross-validation that could influence ML training and testing perfor-
mance (Zhang et al., 2009), most of the studies did not examine the 
effects of the number of folds. It is suggested conducting multiple trials 
with cross-validation with different trials and reporting such informa-
tion to help future applications to determine optimal number of folds of 
cross-validation to achieve reliable ML model predictions. 

Despite the studies reporting a wide range of metrics, there is a lack 
of widely accepted criteria for determining whether a ML performance is 
satisfactory for regression problems. As values for RMSE, MSE, and MAE 
are highly dependent on the units of the response variables, it is difficult 
to directly compare those metrics across studies or set a uniform stan-
dard to determine if the performance of a ML model is satisfactory. As 
such, it is suggested that dimensionless metrics such as R, R2, NRMSE, 
MRE, MAPE are more feasible for comparing ML performance across 
studies/applications. Note that, the use of dimensionless metrics does 
not guarantee a fair comparison between ML performance across prob-
lems, as different application cases have different inputs and require 
different levels of accuracy. Therefore, likely the criteria used to deter-
mine if a ML model performs satisfactorily vary case by case. 

4.2.3. Model uncertainty 
Most of the reviewed studies didn't consider the uncertainty 

embedded in ML training datasets and models. Many studies used ML as 
a surrogate model for prediction, optimization and uncertainty 

assessment. While these studies are valuable contributions, ML in-
troduces additional uncertainty to the existing LCA model structure due 
to uncertainty of training datasets and diverse model choices (i.e. al-
gorithms and training/validation procedures). Assessing the uncertainty 
of ML models is challenging and only was briefly discussed in two of 
these studies. For example, Romeiko et al. (2020b) focused on the un-
certainty introduced by training algorithms. Nguyen et al. (2019) 
mentioned the uncertainty of ML algorithms, but didn't provide any 
quantitative assessment. None of these studies comprehensively 
analyzed the uncertainty associated with data, algorithm and model 
structure. 

4.3. Future research directions in fusing ML and LCA 

4.3.1. Build or access high-quality large datasets 
Both ML and LCA approaches require extensive amounts of data for 

establishing the models. The lack of datasets is a major bottleneck for 
applying ML in LCA. It's worth noting that the LCA communities have 
been developing large databases under various initiatives. For example, 
The Life Cycle Initiative hosted by the United Nation Environmental 
Programme built the Global LCA Data Access network (GLAD), which is 
the largest directory of LCA datasets from independent LCA database 
providers around the world (UN Environment Programme, 2023). 
Although GLAD doesn't directly host databases, it supports LCA data 
accessibility by redirecting the users to the data providers and enables 
data interoperability. Federal LCA commons led by US governmental 
labs is positioned to serve as a central point of access to a collection of 
data repositories for LCA studies at no cost (Federal LCA Commons, 
2022). European Commission's Life Cycle Data Network provides a 
globally usable infrastructure for the publication of quality assured LCA 
dataset from different organizations (European Commission, 2023). 
Despite these valuable efforts, further expansion of databases will be 
necessary to support the integration of ML and LCA. 

Meanwhile, the big datasets generated by various industries provide 
new opportunities for ML and LCA. For example, the newly generated 
big data in agriculture can lead to innovative integration of ML and LCA 
in several stages of food supply chains. During the agricultural pro-
duction stage, the adoption of sensors at farms provides large volume 
spatially and temporally explicit soil, climate, crop and emission data-
sets (Wolfert et al., 2017), which can serve as data foundation for the 
integrated ML and LCA for understanding the spatial and temporal 
heterogeneity of environmental impacts and designing mitigating stra-
tegies. During the transportation stage, the use of sensor monitoring 
humidity, temperature, light, and microbiological and product quality 
in transit is useful for the food industry in rescheduling, recalling, or 
redesigning supply chain logistics (Bhutta and Ahmad, 2021; 
Maksimović et al., 2015). During the food consumption stage, integra-
tion of AI and LCA may analyze food consumption behaviors and per-
ceptions and elucidate environmental health impacts of food 
consumption at multiple scales (Samad et al., 2022). Overall, harnessing 
the existing big datasets in various industries and expanding the LCA 
databases for integrated AI and LCA may be fruitful research directions. 

4.3.2. Robust modeling selection 
Comparisons between two or more models are recommended in 

order to determine the most suitable ML models. Multiple-fold cross- 
validation is preferable in order to make full use of the available datasets 
for model training and validation, particularly when the sample size isn't 
too large. Additionally, stratified cross-validation is recommended to 
counteract the imbalance of available datasets. It is worth noting that 
imbalanced data is not unusual in ML. The distribution of the available 
data may not represent well the full spectrum of the true data. In those 
cases, the stratified cross-validation (Diamantidis et al., 2000; Zeng and 
Martinez, 2000) could ensure that each of the multiple folds data groups 
contains comparable fractions of the data, which belong to different 
target classes for classification problems, or ranges of response variables 
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for prediction problems. 
Whereas it is difficult to establish a uniform guideline to assess ML 

model performance, it is still useful to have an accepted model evalua-
tion reporting procedures (e.g., which metrics should be used and what 
are the cut-off thresholds for satisfactory performance). Such informa-
tion provides a benchmark regarding the general expected performance 
of a ML model for a certain type of problems. This information will also 
help ML model users to decide if additional time and resources should be 
invested to train different ML models or collecting new data to improve 
model performance. As different metrics measure different aspects of the 
goodness of fit, it is suggested using multiple metrics, instead of only 
one. In addition to regression problems, for the studies that address 
distribution, uncertainty, and classification problems (Abdella et al., 
2020; Feng et al., 2019; Tao et al., 2018), it is also suggested to use and 
report a common set of dimensionless metrics that could be compared 
across studies or application purposes. 

4.3.3. More detailed information about ML applications and uncertainty 
evaluation 

Future studies are recommended to report necessary details about 
ML model selection, evaluation and uncertainty. Model selection and 
evaluation are important aspects of ensuring reliable model outcomes to 
aid in solving real world problems. However, they often receive less 
attention than the ML algorithms themselves. It is important to consider 
the breadth of techniques and evaluate multiple techniques in order to 
select the right approach for the applications. 

Additionally, caution should be paid to assess model uncertainty 
when applying ML to LCA. Understanding model uncertainty is neces-
sary for understanding potential biases of modeling results and avoiding 
misinterpreting modeling results for decision making. However, most of 
the reviewed studies haven't evaluated model uncertainty. Meanwhile, 
many new ML methods have been developed to model uncertainty such 
as Bayesian deep learning, combination of fuzzy logic with neural net-
works, rough set theory and imprecise probability (Abdar et al., 2021). 
We recommend future studies to consider these methods to evaluate 
model uncertainty in integrated ML and LCA models. 

4.3.4. Exploring new ML models 
Future LCA studies should consider integration with new ML models. 

Specifically, deep learning may open new territories in LCA applica-
tions. The existing work has shown the initial success of integrating ML 
methods to improve life cycle inventory, impact assessment and inter-
pretation. Most of these studies utilized ANN. In recent years, however, 
deep learning has elevated the potential for learning with ANN to new 
heights. Thus, deep learning methods may also be very fruitful within 
LCA. Deep learning is based on standard ANN algorithms but utilizes 
much larger and deeper networks trained on big datasets. The deep 
learning enables discovering the intricate structure in large datasets and 
disentangling complex features. Deep learning methods have been 
highly effective in areas such as image classification, speech recognition, 
anomalies detection, new material discovery, and other complex prob-
lems. Integrating LCA with deep learning may enable incorporating 
nontraditional data sources such as images to life cycle inventory and 
may aid in discovering new patterns of life cycle impacts. 

5. Conclusions 

This review analyzed forty peer-reviewed articles that reported the 
joint use of ML and LCA for quantitative sustainability assessment. ML 
has aided in advancing life cycle inventory, life cycle impact assessment 
and interpretation due to its capabilities of accurately predicting values, 
discovering hidden patterns and improving computational efficiency. 

This review also revealed challenges of applying ML in LCAs. First, 
although ML training datasets were derived from diverse sources (pri-
marily from model simulations), the size of training datasets is relatively 
small. Moreover, while a variety of ML models were used, there is still a 

lack of detailed model description and established guidelines regarding 
which metrics and the standards should be used to judge if the perfor-
mance of a ML model is satisfactory. Furthermore, uncertainty analysis 
associated with ML predictions are rarely analyzed. 

These findings led to the following suggestions including: (1) 
continuous data collection and compilation for supporting reliable ML 
and LCA modeling; (2) reporting sufficient details regarding the selec-
tion criteria for ML models and presenting model uncertainty analysis; 
and (3) exploring new ML models in LCA studies; and (4) deep inte-
gration of ML into various LCA stages to solve the complex environ-
mental sustainability challenges. 
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Slapnik, M., Istenič, D., Pintar, M., Udovč, A., 2015b. Extending life cycle assessment 
normalization factors and use of machine learning – a Slovenian case study. Ecol. 
Indic. 50, 161–172. 

Song, R., Keller, A.A., Suh, S., 2017. Rapid life-cycle impact screening using artificial 
neural networks. Environ. Sci. Technol. 51, 10777–10785. 

X.X. Romeiko et al.                                                                                                                                                                                                                             

http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0010
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0010
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0010
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0015
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0015
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0015
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0015
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0020
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0020
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0020
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0025
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0025
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0025
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0030
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0030
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0030
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0030
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0035
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0035
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0035
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0040
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0040
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0040
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0045
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0045
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0045
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0050
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0050
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0055
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0055
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0060
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0060
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0060
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0065
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0065
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0070
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0070
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0070
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0075
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0075
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0075
https://eplca.jrc.ec.europa.eu/
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0085
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0085
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0085
https://www.lcacommons.gov/
https://www.lcacommons.gov/
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0095
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0095
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0095
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0100
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0100
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0100
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0105
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0110
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0110
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0115
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0115
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0115
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0120
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0120
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0125
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0125
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0125
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0125
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0130
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0130
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0130
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0135
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0135
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0140
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0140
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0140
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0145
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0145
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0145
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0145
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0150
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0150
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0150
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0150
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0155
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0155
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0160
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0160
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0160
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0165
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0165
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0165
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0165
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0170
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0170
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0170
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0175
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0175
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0175
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0180
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0180
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0180
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0185
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0185
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0185
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0190
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0190
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0195
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0200
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0200
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0200
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0200
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0205
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0205
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0205
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0205
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0210
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0210
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0210
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0215
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0215
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0215
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0220
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0220
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0220
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0225
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0225
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0225
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0225
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0230
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0230
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0230
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0230
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0235
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0235
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0235
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0235
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0240
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0240
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0240
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0245
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0245
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0250
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0250
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0250
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0255
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0255
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0255
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0260
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0260
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0260
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0265
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0265
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0265
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0265
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0270
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0270
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0270
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0275
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0275
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0275
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0280
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0280
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0280
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0285
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0285
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0285
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0290
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0290


Science of the Total Environment 912 (2024) 168969

14

Sousa, I., Eisenhard, J.L., Wallace, D., 2001. Approximate life-cycle assessment of 
product concepts using learning systems. J. Ind. Ecol. 4, 61–81. 

Sundaravaradan, N., Patnaik, D., Ramakrishnan, N., Marwah, M., Shah, A., 2011. 
Discovering Life Cycle Assessment Trees From Impact Factor Databases. In: 
Association for the Advancement of Artificial Intelligence Proceedings of the AAAI 
Conference on Artificial Intelligence, 25, pp. 1415–1420. 

Suter-Crazzolara, C., 2018. Better patient outcomes through mining of biomedical big 
data. Front. ICT 5, 30. 

Tao, M., Li, D., Song, R., Suh, S., Keller, A.A., 2018. OrganoRelease e a framework for 
modeling the release of organic chemicals from the use and post-use of consumer 
products. Environ. Pollut. 234, 751–761. 

The Ecoinvent Association. Ecoinvent Database. https://ecoinvent.org/the-ecoinvent- 
database/, accessed June 2023. 

Thilakarathna, P.S.M., Seo, S., Kristombu Baduge, K.S., Lee, H., Mendis, P., Foliente, G., 
2020. Embodied carbon analysis and benchmarking emissions of high and ultra-high 
strength concrete using machine learning algorithms. J. Clean. Prod. 262, 12181. 

UN Environment Programme, 2023. The Global LCA Data Access Network. https://www. 
unep.org/explore-topics/resource-efficiency/what-we-do/life-cycle-initiative/glo 
bal-lca-data-access-network. (Accessed  June 2023). 

Vlontzosa, G., Pardalosb, P.M., 2017. Assess and prognosticate green house gas emissions 
from agricultural production of EU countries, by implementing, DEA window 
analysis and artificial neural networks. Renew. Sust. Energ. Rev. 76, 155–162. 

Wolfert, S., Ge, L., Verdouw, C., Bogaardt, M.-J., 2017. Big data in smart farming – a 
review. Agric. Syst. 153, 69–80. 

Xu, M., Cai, H., Liang, S., 2015. Big data and industrial ecology. J. Ind. Ecol. 19, 
205–210. 

Zeng, X., Martinez, T.R., 2000. Distribution-balanced stratified cross-validation for 
accuracy estimation. J. Exp. Theor. Artif. Intell. 12, 1–12. 

Zhang, X., Srinivasan, R., Van Liew, M., 2009. Approximating SWAT model using 
artificial neural network and support vector machine. J. Am. Water Resour. Assoc. 
45, 460–474. 

Zhao, Y., Zhang, Q., Li, F.Y., 2019. Patterns and drivers of household carbon footprint of 
the herdsmen in the typical steppe region of inner Mongolia, China: a case study in 
Xilinhot City. J. Clean. Prod. 232, 408–416. 

Zhu, X., Ho, C.-H., Wang, X., 2020. Application of life cycle assessment and machine 
learning for high-throughput screening of green chemical substitutes. ACS Sustain. 
Chem. Eng. 8, 11141–11151. 

Ziyadi, M., Al-Qadi, I.L., 2019. Model uncertainty analysis using data analytics for life- 
cycle assessment (LCA) applications. Int. J. Life Cycle Assess. 24, 945–959. 

X.X. Romeiko et al.                                                                                                                                                                                                                             

http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0295
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0295
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf1415
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf1415
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf1415
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf1415
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0305
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0305
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0310
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0310
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0310
https://ecoinvent.org/the-ecoinvent-database/
https://ecoinvent.org/the-ecoinvent-database/
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0320
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0320
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0320
https://www.unep.org/explore-topics/resource-efficiency/what-we-do/life-cycle-initiative/global-lca-data-access-network
https://www.unep.org/explore-topics/resource-efficiency/what-we-do/life-cycle-initiative/global-lca-data-access-network
https://www.unep.org/explore-topics/resource-efficiency/what-we-do/life-cycle-initiative/global-lca-data-access-network
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0325
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0325
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0325
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0330
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0330
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0335
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0335
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0340
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0340
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0345
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0345
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0345
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0350
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0350
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0350
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0355
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0355
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0355
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0360
http://refhub.elsevier.com/S0048-9697(23)07598-8/rf0360

	A review of machine learning applications in life cycle assessment studies
	1 Introduction
	2 Methods
	3 Results
	3.1 Articles identified following the PRISMA guideline
	3.2 Trends in ML & LCA publications and application areas
	3.3 Addressed knowledge gaps by applying ML in LCA
	3.4 ML applications in various stages of life cycle assessment
	3.4.1 ML for life cycle inventory
	3.4.2 ML for life cycle impact assessment
	3.4.3 ML for life cycle interpretation

	3.5 Types of ML models in LCA studies
	3.6 Sources and sample sizes of datasets for ML models in LCA studies
	3.7 ML model training and evaluation
	3.7.1 ML model training and evaluation methods
	3.7.2 ML model training and evaluation metrics


	4 Discussion
	4.1 Merits of applying ML in LCA
	4.2 Challenges of applying ML in LCA
	4.2.1 Lack of data
	4.2.2 Lack of detailed description about model selection and evaluation
	4.2.3 Model uncertainty

	4.3 Future research directions in fusing ML and LCA
	4.3.1 Build or access high-quality large datasets
	4.3.2 Robust modeling selection
	4.3.3 More detailed information about ML applications and uncertainty evaluation
	4.3.4 Exploring new ML models


	5 Conclusions
	CRediT authorship contribution statement
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Supplementary data
	References


