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Figure 1: This figure illustrates the capability of AURORA to generate multiple outlines from input RGB-D images. The virtual
outlines represent a fully modeled 3D scene with complete object replacements, while the hybrid outlines combine both the
reconstructed geometry and model placements, providing a comprehensive yet flexible visualization of the interior design
layout.

Abstract
Creating realistic VR experiences is challenging due to the labor-
intensive process of accurately replicating real-world details into
virtual scenes, highlighting the need for automated methods that
maintain spatial accuracy and provide design flexibility. In this
paper, we propose AURORA, a novel method that leverages RGB-D
images to automatically generate both purely virtual reality (VR)
scenes and VR scenes combined with real-world elements. This
approach can benefit designers by streamlining the process of con-
verting real-world details into virtual scenes. AURORA integrates
advanced techniques in image processing, segmentation, and 3D
reconstruction to efficiently create realistic and detailed interior
designs from real-world environments. The design of this integra-
tion ensures optimal performance and precision, addressing key
challenges in automated indoor design generation by uniquely
combining and leveraging the strengths of foundation models. We
demonstrate the effectiveness of our approach through experiments,
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both on self-captured data and public datasets, showcasing its po-
tential to enhance virtual reality (VR) applications by providing
interior designs that conform to real-world positioning.

CCS Concepts
• Computing methodologies→ Reconstruction; Scene under-
standing; • Human-centered computing→ Virtual reality.

Keywords
Virtual Reality, Interior Design, Room Layout

ACM Reference Format:
Huijun Han, Yongqing Liang, Yuanlong Zhou, Wenping Wang, Edgar J.
Rojas-Muñoz, and Xin Li. 2024. AURORA: Automated Unleash of 3D Room
Outlines for VR Applications. In The 19th ACM SIGGRAPH International
Conference on Virtual-Reality Continuum and its Applications in Industry
(VRCAI ’24), December 01–02, 2024, Nanjing, China. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3703619.3706036

1 Introduction
Creating Virtual Reality (VR) is essential for delivering engaging
user experiences. However, building high-quality virtual scenes is
often labor intensive and time-consuming. Designers often need to
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invest substantial expertise and effort to meticulously translate real-
world details into virtual settings, ensuring accuracy, engagement,
and visual coherence. To infuse authenticity into VR spaces, design-
ers often draw inspiration from their own surroundings, modeling
virtual scenes after real-life environments or incorporating struc-
tural and aesthetic cues from the physical world. This approach
brings familiarity to VR experiences, making them more relatable
and easier to navigate. However, this manual process of capturing
and replicating these details is inefficient. Thus, it is highly desir-
able to have efficient and automatic methods to seamlessly convert
real-world details into virtual scenes populated with 3D assets in
correct orientation, dimension, and layout.

Besides automation, designers often seek flexibility in the de-
sign process. For example, even with a same layout design, differ-
ent users could prefer using different material or styles of objects.
Thus, it is desirable to have the capability of exploiting different
design/style options from a same set of input images. A system
that can use a same set of input images, to preserve the objects’
spatial arrangement, yet generate both purely virtual reality (VR)
environments and VR combined with real-world elements will offer
such a desirable flexibility requirement. In this work, we focus on
indoor scene design generation.

Compared to directly using fisheye or panoramic images, a 3D
reconstructed scene offers a more accurate and realistic representa-
tion of the environment, enabling smoother, more intuitive inter-
action and minimizing distortion during navigation. Additionally,
to achieve semantic understanding of the scene, the instance seg-
mentation part is crucial. Thus, we perform 3D reconstruction
followed by segmentation and registration to accurately trans-
form 2D images into detailed interior designs, ensuring precise
object placement and spatial alignment.

Recent advancements in reconstruction have shown that Gauss-
ian Splatting based algorithms offer superior quality in dense re-
construction, especially in novel view synthesis and achieving high
levels of color realism [Keetha et al. 2024; Matsuki et al. 2024; Yan
et al. 2024]. These algorithms are particularly effective at generating
detailed 3D reconstructions from 2D images, capturing both spatial
geometry and texture with impressive accuracy [Fei et al. 2024].
However, as these algorithms are not specifically optimized for
indoor scenes, the resulting 3D scans may exhibit some noise, such
as floating point artifacts [Sandström et al. 2024]. This introduces
the first challenge: the noise in the scan data can accumulate as it is
processed through the pipeline, particularly when fed downstream
to subsequent modules like segmentation and model replacement.
In contrast to well-annotated point cloud instance segmentation
datasets, such as ScanNet++ [Yeshwanth et al. 2023] and S3DIS [Ar-
meni et al. 2016], which support robust model training, the segmen-
tation module faces limitations due to the lack of a comprehensive
GS-based segmentation annotation dataset. This scarcity hinders
the robustness of Gaussian-based segmentation methods across
varied conditions. As a result, the segmentation process on Gaus-
sians becomes more challenging. While recent work has addressed
some aspects of grouping [Ye et al. 2024], these efforts remain in-
sufficient to produce bounding box layout, especially when dealing
with complex structures and large rooms, since they lack precise
boundary detection between individual instances. Large-scale envi-
ronments introduce additional complexities such as increased data

volume, higher computational demands, and greater variability in
room layouts. In the registration part of the pipeline, the lack of
utilizing indoor layout priors poses a significant challenge. Without
incorporating common design rules or architectural constraints,
such as wall boundaries, furniture placement guidelines, and room
proportions, the registration process may result in inaccuracies
where furniture and objects appear to float or penetrate walls.

These aforementioned challenges can be summarized as follows:

• The quality of 3D reconstruction may be insufficient for
downstream tasks, as noisy data from the scanning process
can lead to errors that accumulate throughout the pipeline,
affecting the accuracy and quality of the final design.

• There is currently no end-to-end automated design pipeline
that can generate complete designs directly from RGB-D data
and output a hybrid of Gaussian and mesh representations.

• Absence of room priors: The failure to integrate room lay-
out priors into the module integration results in unrealistic
furniture placement, such as floating objects or objects pen-
etrating walls, during the registration

In this work, we introduce AURORA – an automated pipeline
that streamlines interior design by efficiently capturing and trans-
lating real-world spaces into detailed 3D indoor outlines.

Specifically, we first perform aGS-based SLAM, using SPLATAM [Keetha
et al. 2024], from RGB-D data captured by portable devices such
as smartphones. We then perform surface reconstruction, incorpo-
rating two novel geometry losses to enhance accuracy and quality.
Next, to leverage robust Foundation models for 3D instance seg-
mentation, we convert the 3D Gaussians into a point cloud using
TSDF-fusion [Zeng et al. 2017]. Then, to ensure the segmented
bounding box layout to be positioned on the ground, we enforce
geometric constraints to (1) align the layout’s base plane with the
ground plane, and (2) preventing the layout from penetrating the
walls or intersecting each others.

Unlike common model replacement methods that often result
in model overlap and orientation inconsistencies, our approach
minimizes these issues and better preserves overall scene layout,
maintaining consistency in both object placement and orientation.

We conducted extensive experiments to validate our system,
which can produce high-quality VR scenes from captured image
sequences effectively. This flexibility and ease of use make it a
useful tool that significantly enhances accessibility and efficiency
in VR scene design, for not only designers but also common public
users.

Themain contributions of this work are

• We refine the Gaussian representation with two novel geom-
etry losses to ensure optimal performance in downstream
tasks.

• We propose the first end-to-end pipeline that directly trans-
forms RGB-D data into a mixed Gaussian and mesh repre-
sentation.

• We leverage interior priors to enhance the realism of the
room layout, ensuring more accurate furniture placement
and spatial arrangement.
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2 Related Work
2.1 3D Room Scanning for Virtual Reality
In 3D room scanning, tools such as fisheye lenses, panoramic imag-
ing, and RGB-D sensors like the iPhone with LiDAR scanner are
frequently employed to capture and convert real-world surround-
ings into a virtual space.

Panoramic images, particularly 360-degree ones, are widely used
for virtual reality room scanning due to their ability to provide an
immersive environment by allowing users to explore real-world
spaces [Cruz et al. 2021; Shen et al. 2023; Tsai et al. 2024; Zhou
et al. 2025]. However, there are several drawbacks when using 360◦
panoramas as a medium, such as limitations in image resolution,
the fixed viewpoint which restricts movement within the scene,
and parallax errors caused during the stitching process [Ritter III
and Chambers 2022].

In virtual reality, fisheye lenses are beneficial as they capture
extremely wide-angle images, thus enhancing the immersive expe-
rience by including more of the environment in a single shot [Meng
et al. 2021, 2024]. After capturing, the fisheye images need to be
corrected for the distortion caused by the lens [Amini et al. 2022].
The primary issue with fisheye images is the inherent distortion.
The barrel effect, which stretches the center of the image and com-
presses the periphery, can misrepresent the geometry of the space.
For example, in a modeled camera translation, simulated images
exhibit unrealistic perspective distortions [Jakab et al. 2024]. In
floor plans, this can be problematic when users need precise spatial
information.

In contrast, the advantages of RGB-D sensors are three-fold.
First, it is affordable for most common users. Recent iPhones have
powerful depth lenses to allow users to capture depth-of-field im-
ages. Second, the RGB-D sensor is often portable and can be easily
set in the field. Third, images captured by the RGB-D sensor ap-
pear visually similar to what humans typically see, compared with
the panoramic and fisheye lenses. Hence, we leverage the RGB-D
images as our 2D inputs to generate multiple interior designs.

2.2 3D Instance Segmentation
In the field of 3D instance segmentation, recent works primarily
have two technical approaches: one is to segment based on 3D
Gaussian Splatting (3D-GS), and another is to segment based on
point cloud.

Gaussian grouping [Ye et al. 2024] grouped items based on 2D
segmentation labels by using Identity Encodings that link Gaus-
sians to object instances, guided by 2D mask predictions from
models like SAM during differentiable rendering. SAGD [Hu et al.
2024] addressed ambiguous boundaries in 3D-GS segmentations
by using a Gaussian Decomposition scheme that learns from 3D-
GS’s structure, improving boundary segmentation and accuracy.
However, due to the inherent complexity of 3D-GS, including its
ambiguous structures and unconstrained geometry, these meth-
ods face challenges with unclear boundaries between objects and
the background, leading to segmentation inaccuracies and reduced
robustness.

On the other hand, point cloud segmentation yields more reliable
results, as it benefits from a larger training dataset compared to
3D-GS-based segmentation. Recently, SoftGroup++ [Vu et al. 2022,

2023] proposed a 3D instance segmentation model that can handle
a wide variety of room types. It is trained on the extensive Scan-
Net++ dataset [Yeshwanth et al. 2023], enabling it to generalize well
across various 3D scenes, ensuring broad applicability in real-world
environments. Another framework, named MSTA3D [Tran et al.
2024], addressed challenges such as over-segmentation and unre-
liable mask predictions in 3D instance segmentation. It achieves
this by leveraging a multi-scale feature representation combined
with a novel twin-attention mechanism, improving segmentation
accuracy and robustness.

2.3 3D Model Retrieval and Registration
In [Ainetter et al. 2023, 2024], Ainetter presented an automatic
method for aligning CAD models with captured scenes. To refine
the pose of a CAD model, the method uses a differentiable pose
refinement approach. The 9-DoF pose of the model is found us-
ing a differentiable optimization process that minimizes the error
between the rendered CAD model and the captured scene. One
main drawback of the differentiable pose refinement method is
that it relies on accurate initial pose estimation. If the initial align-
ment is off, the refinement process might struggle to converge to
a correct solution. Wei use learned representations to distinguish
between model categories and a modified Chamfer distance metric
for model registration, re-ranking the CAD neighborhood to en-
able fine-grained retrieval of clean CAD models from a large-scale
database [Wei et al. 2022]. Since these methods are not specifically
designed for indoor furniture placement, they may not adequately
address issues such as object intersection with walls and floors.

3 Methodology
We propose an automated pipeline that takes user-provided RGB-D
images as input and generates room outline options—either virtual
or hybrid—as output, as shown in Figure 2.

The virtual outline option, where the entire environment is re-
placed with CAD models, ensures a fully structured representation
beneficial for applications requiring precision and standardization,
such as interior design and virtual staging. The hybrid outline op-
tion, which replaces only part of the furniture with CAD models
while retaining reconstructed 3D Gaussians, offers a balance be-
tween realism and flexibility, making it suitable for scenarios like
renovation planning or mixed-reality experiences.

The methodology is detailed as follows: Section 3.1 covers the 3D
reconstruction process the necessary refinement steps to enhance
the accuracy and detail of the reconstructed scene. Section 3.2 de-
scribes the instance segmentation module, which identifies and
segments walls, floors, and furniture, including the necessary con-
version of the map representation. Section 3.3 estimates the floor
and wall objects to compute the indoor dimension. Section 3.4 out-
lines the model registration step, which produces the interior room
design options for the user.

3.1 Indoor Reconstruction
3D reconstruction is necessary to accurately understand the spatial
relationships and structure of objects in a scene, as it transforms
pixel-based 2D data into a detailed 3D representation. This process
provides the depth and geometry needed for segmentation, where
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Figure 2: This illustration demonstrates our pipeline, where user-provided RGB-D images are processed to generate multiple
room outline options. The first option, named virtual outline, replaces the entire scene with CAD models for a fully structured
representation. The second option, named hybrid outline, replaces selected furniture items with CAD models while retaining
other elements from the 3D reconstruction for a blended representation. The input images are processed via a Gaussian
Splatting-based module, generating 3D Gaussians with camera poses (top middle), then refined with normal priors to improve
accuracy and detail (top right). This step is followed by a conversion from GS to a textured point cloud for feeding into
the instance segmentation module. The 3D segmentation module then identifies and separates walls, floors, and furniture.
Segmented walls and floors (bottom middle) are used to extract an actual-size floor with surrounding walls, while segmented
furniture (bottom middle) is matched to database models, presenting outline options to the user.

distinguishing between different parts of the scene is important, and
for VR applications, where immersive and realistic representations
of the environment are required.

Recent studies in 3D reconstruction have favored Gaussian Splat-
ting (GS) because it can represent the scene realistically and en-
hance camera localization [Keetha et al. 2024; Matsuki et al. 2024;
Yan et al. 2024]. To perform 3D reconstruction, where a sequence
of 2D RGB-D images is taken as input and the outputs include

camera pose estimation and scene mapping, We adopt the state-of-
the-art method SplaTAM [Keetha et al. 2024], followed by surface
reconstruction to refine the results.

Although SplatAM estimates camera poses and 3D Gaussian
scene, it mainly focues on speed and pose estimation. The quality
of the rendered 3D Gaussians is not sufficient for VR applications,
which require higher fidelity and precision. To address this issue,
we modified the PGSR method by introducing two geometric losses
to refine the 3D scene.
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In the surface reconstruction stage, we take the RGB-D im-
ages and camera poses estimated from the previous stage as in-
put. We train gaussians using the RGB and geometric losses from
PGSR [Chen et al. 2024], along with two new losses: L𝑛𝑜𝑟𝑚𝑎𝑙 and
L𝑑𝑒𝑝𝑡ℎ .

First, we leverage geometric foundation model Metric3D [Yin
et al. 2023] to estimate the normal of the frame 𝑡 as 𝑁 𝑒

𝑡 . Since the
predicted normal may not be consistent across the video, we use
its derivatives in normal loss L𝑛𝑜𝑟𝑚𝑎𝑙 to guide the surface recon-
struction. We compute the first-order derivative of the predicted
normal map 𝑁 𝑒

𝑡 and the rendered normal map 𝑁 𝑟
𝑡 , with respect to

the pixel coordinates,

¤𝑁 𝑒
𝑡 (𝑝) =

𝜕𝑁 𝑒
𝑡 (𝑝)
𝜕𝑝

, (1)

¤𝑁 𝑟
𝑡 (𝑝) =

𝜕𝑁 𝑟
𝑡 (𝑝)
𝜕𝑝

, (2)

where 𝑝 is the pixel location.We constrain the ¤𝑁 𝑟
𝑡 from 3DGaussian

scene to be close to the predicted derivative ¤𝑁 𝑒
𝑡 by the L1 norm,

L𝑛𝑜𝑟𝑚𝑎𝑙 = 1 − 1
|𝑝 |

∑︁
𝑝

∥ ¤𝑁 𝑒
𝑡 (𝑝) − ¤𝑁 𝑟

𝑡 (𝑝)∥1, (3)

where |𝑝 | is the total number of pixels.
Second, we constrain the rendered depth 𝐷𝑟

𝑡 to be close to the
captured depth 𝐷

𝑔𝑡
𝑡 using the L1 norm,

L𝑑𝑒𝑝𝑡ℎ =
1
|𝑝 |

∑︁
𝑝

∥𝐷𝑟
𝑡 (𝑝) − 𝐷

𝑔𝑡
𝑡 (𝑝)∥1 . (4)

We minimize the following loss function to optimize the 3D recon-
struction,

L = L𝑃𝐺𝑆𝑅 + 𝜆𝑁L𝑛𝑜𝑟𝑚𝑎𝑙 + 𝜆𝐷L𝑑𝑒𝑝𝑡ℎ, (5)

where we set 𝜆𝑁 = 1 and 𝜆𝐷 = 1.5 in our experiments.

3.2 3D Instance Segmentation
Point cloud segmentation has been well-studied for decades. It is
robust enough to segment objects in a zero-shot video. Hence, we
convert our 3D scene into point clouds and apply point cloud-based
instance segmentation. During the conversion, we use a robust
truncated signed distance field (TSDF) [Zhou and Koltun 2013]
method, ensuring that the point cloud inherits the point colors
from the 3D Gaussians.

For the instance segmentation task, we adopt SoftGroup++[Vu
et al. 2022, 2023], trained on the extensive ScanNet++[Yeshwanth
et al. 2023] dataset, as it is the most robust method identified, ca-
pable of handling a wide variety of room types. The advantages
of SoftGroup++ include its scalability and ability to operate effec-
tively in large-scale scenes, such as those exceeding 10𝑚2. It also
accurately produces bounding boxes for segmented instances.

3.3 Envelope Extraction
We assume that the floor is a plane and a plane representation is
used tomodel the floor. Given the point cloud of the segmented floor,
we ran a principal component analysis (PCA) to compute its main
axes. The first and the second axes with the largest eigenvalues are
denoted as the directional vectors of the floor, 𝑓1, 𝑓2. The last axis is

the normal of the floor 𝑓𝑛 = 𝑓1 × 𝑓2. We projected the point cloud
of the floor to the 2D plane 𝑓1 and 𝑓2 and computed the 2D contour
of them. The floor area and dimensions are estimated from the 2D
contour.

To reconstruct the wall in the scene, we projected the segmented
wall point cloud to the normal of the floor 𝑓𝑛 The projected lengths
are a list of the heights from the floor. To remove the outliers and
noises, we sort the heights and select the 95% percentile number
as the height of the room. The volume of the room is computed by
the reconstructed wall and floor.

3.4 Model Retrieval and Registration
We use the widely-used ShapeNet [Chang et al. 2015] as our 3D
model database. Given a point cloud of the query object and its label,
we randomly picked𝑀 3D models from the same category as the
model candidates. The orientation of the 3Dmodel in ShapeNet [Chang
et al. 2015] is pre-calibrated to face the z-axis, while the sizes and
the rotations of xy-axes may not be aligned with the reconstructed
scene. Hence, we move the 3D object to the reconstructed scene
and try to optimize its scales and rotation.

The baseline method is to directly place the 3D model from the
ShapeNet in the scene that only aligns with the normal direction
of the floor. The potential problem with this straightforward way
is that the placed model may not fit the scene well. Specifically, the
sizes of the model may not fit the segmented point cloud of the
object of interest, and the orientations of the candidate model and
the interested object may differ.

We evaluate the chamfer distance Dist between the point cloud
of the segmented object 𝑇 and the placed 3D model𝑀 . In practice,
we estimate the major axes of𝑇 and𝑀 , respectively. We first resize
the 3D candidate model𝑀 by the ratio of the lengths of the major
axes. Next, we iteratively rotate the object by small intervals (20
degrees) and then compute the chamfer distance Dist. We select the
minimal Dist as the object placement.

4 Experiments
We conducted extensive experiments on both the TUM dataset
and our self-captured dataset to evaluate the performance of our
automated pipeline.

For the self-captured dataset, we used an iPhone Pro with a Li-
DAR depth sensor to capture 200 RGB-D images for each scene. We
captured 10 scenes, covering classrooms, library study rooms, and
dormitory. For the open dataset, we chose to use the TUM RGB-D
dataset [Sturm et al. 2012]. This is because none of our modules
have seen the TUM dataset; it is a new scene compared to Scan-
Net++, on which SoftGroup++ [Vu et al. 2022] was trained. These
dataset provides a sufficient variety to demonstrate the robustness
of our pipeline on unseen scenes.

We pick up 3D assets from ShapeNet [Chang et al. 2015] as our
3D model database. These assets are then aligned with the layout
to generate the interior design variations.

4.1 Quantitative Results
We evaluated the placement of the 3D objects using the proposed
metrics. Table 1 shows the comparisons between the baseline and
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Chair

(b) model placement1 (c) model placement 2 (d) model placement 3(a) point cloud

Table

Table

Figure 3: Results of the model placement in the 3D scene. We replace the segmented point cloud with the candidate models
from the ShapeNet [Chang et al. 2015] to explore various interior designs. Our model could randomly generate multiple model
placements in the scene. We show three of them for qualitative evaluation. (a) is the segmented point cloud of the interested
object. (b-d) show the model placements in the scene. The placement of furniture fit the point clouds well.

Table 1: Quantitative comparisons on the model placements.
Our approach has better placement accuracy compared with
the baseline method.

Scene Metrics Baseline Ours

TUM-plant Dist ↓ 0.0538 (±0.095) 0.0189 (±0.026)
Study room Dist ↓ 0.0181 (±0.018) 0.0070 (±0.005)

our method. The proposed metrics can effectively evaluate the qual-
ity of the model placement in the indoor design. Poor indoor design
and incorrect model placement result in low scores. Compared with
the baseline, our method can align the model orientation with the
segmented point clouds, as well as the sizes of the placed model
also fit.

The results indicate that our method outperforms the baseline in
both test scenes. Specifically, for the TUM-plant scene, our approach
achieves a significantly lower distance error (0.0189 vs. 0.0538), and
similarly, in the Study Room scene, the error is reduced from 0.0181
to 0.0070. These results demonstrate the superior accuracy of our
approach in furniture placement.

4.2 Qualitative Results
Figure 3 shows the qualitative results of our automatic indoor de-
sign, with three examples presented for qualitative evaluation. We
replace the segmented point cloud with the candidate models of
ShapeNet [Chang et al. 2015] to explore various interior designs.
From the results, we can conclude that our approach effectively
adjusts both the scale and orientation of the 3D model to align

with the point cloud, ensuring accurate placement in the scene.
Furthermore, it is capable of generating multiple plausible design
variations.

Figure 4 illustrates the design results from our automated pipeline.
It can be observed that the original position is accurately preserved,
with no penetration into thewalls or object overlap, ensuring spatial
consistency and realistic layout placement, regardless of whether
the hybrid or virtual outline option is used.

5 Conclusion
In this work, we introduce AURORA, a novel automated pipeline
designed to generate both hybrid and virtual outlines from a single
set of RGB-D images. Our pipeline integrates advanced techniques
in 3D reconstruction, segmentation, and model placement, enabling
the generation of realistic and diverse interior designs. Through
extensive experiments on both public datasets and self-captured
data, we demonstrate the robustness and versatility of AURORA in
handling a variety of scenes and configurations. The results show
that our approach effectively preserves spatial consistency, handles
complex environments, and generates plausible interior design
variations, making it a powerful tool for both design professionals
and automated design applications.

6 Limitation
Although the AURORA system integrates multiple methodologies
into a cohesive framework, errors introduced in earlier stages can
propagate and adversely impact subsequent stages. As illustrated
in Figure 4, the accuracy of furniture registration is influenced by
the quality of the segmented point cloud. In future work, we intend
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Figure 4: This illustration shows the design results from our automated pipeline. (Top row) The captured input image; (Middle
row) The hybrid outline, which includes both the reconstructed gaussians and CAD models; (Bottom row) The virtual outline,
where all elements are replaced by the CAD model.

to investigate an end-to-end training approach to mitigate such
issues and improve the overall performance.
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